【題目】十三屆全國(guó)人大二次會(huì)議于201935日在京召開.為了了解某校大學(xué)生對(duì)兩會(huì)的關(guān)注程度,學(xué)校媒體在開幕后的第二天,從學(xué)生中隨機(jī)抽取了180人,對(duì)是否收看2019年兩會(huì)開幕會(huì)情況進(jìn)行了問(wèn)卷調(diào)查,統(tǒng)計(jì)數(shù)據(jù)得到列聯(lián)表如下:

收看

沒(méi)收看

合計(jì)

男生

40

女生

30

60

合計(jì)

1)請(qǐng)完成列聯(lián)表;

2)根據(jù)上表說(shuō)明,能否有99%的把握認(rèn)為該校大學(xué)生收看開幕會(huì)與性別有關(guān)?(結(jié)果精確到0.001

附:,其中.

0.10

0.05

0.025

0.01

0.005

2.706

3.841

5.024

6.635

7.879

【答案】1)詳見(jiàn)解析(2)沒(méi)有99%的把握認(rèn)為該校大學(xué)生收看開幕會(huì)與性別有關(guān)

【解析】

(1)根據(jù)表格給出的數(shù)據(jù)進(jìn)行完善表格即可;

(2)由(1)中數(shù)據(jù)代入公式,求出觀測(cè)值進(jìn)行判斷,即可得出結(jié)論.

1

收看

沒(méi)收看

合計(jì)

男生

80

40

120

女生

30

30

60

合計(jì)

110

70

180

2

所以沒(méi)有99%的把握認(rèn)為該校大學(xué)生收看開幕會(huì)與性別有關(guān).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某化工企業(yè)2018年年底投入100萬(wàn)元,購(gòu)入一套污水處理設(shè)備。該設(shè)備每年的運(yùn)轉(zhuǎn)費(fèi)用是0.5萬(wàn)元,此外,每年都要花費(fèi)一定的維護(hù)費(fèi),第一年的維護(hù)費(fèi)為2萬(wàn)元,由于設(shè)備老化,以后每年的維護(hù)費(fèi)都比上一年增加2萬(wàn)元。設(shè)該企業(yè)使用該設(shè)備年的年平均污水處理費(fèi)用為(單位:萬(wàn)元)

(1)用表示;

(2)當(dāng)該企業(yè)的年平均污水處理費(fèi)用最低時(shí),企業(yè)需重新更換新的污水處理設(shè)備。則該企業(yè)幾年后需要重新更換新的污水處理設(shè)備。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(1)討論函數(shù)的單調(diào)性

(2)函數(shù),且.若在區(qū)間(0,2)內(nèi)有零點(diǎn),求實(shí)數(shù)m的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著手機(jī)的發(fā)展,“微信”逐漸成為人們支付購(gòu)物的一種形式.某機(jī)構(gòu)對(duì)“使用微信支付”的態(tài)度進(jìn)行調(diào)查,隨機(jī)抽取了50人,他們年齡的頻數(shù)分布及對(duì)“使用微信支付”贊成人數(shù)如下表.

年齡

(單位:歲)

,

,

,

,

,

頻數(shù)

5

10

15

10

5

5

贊成人數(shù)

5

10

12

7

2

1

(Ⅰ)若以“年齡45歲為分界點(diǎn)”,由以上統(tǒng)計(jì)數(shù)據(jù)完成下面列聯(lián)表,并判斷是否有99%的把握認(rèn)為“使用微信支付”的態(tài)度與人的年齡有關(guān);

年齡不低于45歲的人數(shù)

年齡低于45歲的人數(shù)

合計(jì)

贊成

不贊成

合計(jì)

(Ⅱ)若從年齡在的被調(diào)查人中按照贊成與不贊成分層抽樣,抽取5人進(jìn)行追蹤調(diào)查,在5人中抽取3人做專訪,求3人中不贊成使用微信支付的人數(shù)的分布列和期望值.

參考數(shù)據(jù):

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

,其中.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的兩個(gè)焦點(diǎn)分別為、,,點(diǎn)在橢圓上,且的周長(zhǎng)為

(Ⅰ)求橢圓的方程;

(Ⅱ)若點(diǎn)的坐標(biāo)為,不過(guò)原點(diǎn)的直線與橢圓相交于,兩點(diǎn),設(shè)線段的中點(diǎn)為,點(diǎn)到直線的距離為,且,,三點(diǎn)共線,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】記焦點(diǎn)在同一條軸上且離心率相同的橢圓為“相似橢圓”.已知橢圓,以橢圓的焦點(diǎn)為頂點(diǎn)作相似橢圓.

(Ⅰ)求橢圓的方程;

(Ⅱ)設(shè)直線與橢圓交于兩點(diǎn),且與橢圓僅有一個(gè)公共點(diǎn),試判斷的面積是否為定值(為坐標(biāo)原點(diǎn))?若是,求出該定值;若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,已知橢圓 的長(zhǎng)軸為,過(guò)點(diǎn)的直線軸垂直,橢圓上一點(diǎn)與橢圓的長(zhǎng)軸的兩個(gè)端點(diǎn)構(gòu)成的三角形的最大面積為2,且橢圓的離心率為.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2) 設(shè)是橢圓上異于 的任意一點(diǎn),連接并延長(zhǎng)交直線于點(diǎn), 點(diǎn)為的中點(diǎn),試判斷直線與橢圓的位置關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(Ⅰ) 求函數(shù)的單調(diào)區(qū)間;

(Ⅱ) 當(dāng)時(shí),求函數(shù)上最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】當(dāng)前全世界人民越來(lái)越關(guān)注環(huán)境保護(hù)問(wèn)題,某地某監(jiān)測(cè)站點(diǎn)于20188月起連續(xù)n天監(jiān)測(cè)空氣質(zhì)量指數(shù)(AQI),數(shù)據(jù)統(tǒng)計(jì)如下表:

空氣質(zhì)量指數(shù)(μg/m3

[0,50]

50,100]

100150]

150,200]

200,250]

空氣質(zhì)量等級(jí)

優(yōu)

輕度污染

中度污染

重度污染

天數(shù)

20

40

m

10

5

1)根據(jù)所給統(tǒng)計(jì)表和頻率分布直方圖中的信息求出nm的值,并完成頻率分布直方圖;

2)由頻率分布直方圖,求該組數(shù)據(jù)的平均數(shù)與中位數(shù);

3)在空氣質(zhì)量指數(shù)分別為[0,50]和(50100]的監(jiān)測(cè)數(shù)據(jù)中,用分層抽樣的方法抽取6天,從中任意選取2天,求事件A“兩天空氣質(zhì)量等級(jí)都為良發(fā)生的概率。

查看答案和解析>>

同步練習(xí)冊(cè)答案