科目: 來源: 題型:
【題目】改革開放以來,伴隨著我國經(jīng)濟持續(xù)增長,戶均家庭教育投入戶均家庭教育投入是指一個家庭對家庭成員教育投入的總和也在不斷提高我國某地區(qū)2012年至2018年戶均家庭教育投入單位:千元的數(shù)據(jù)如表:
年份 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 |
年份代號t | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
戶均家庭教育投入y |
求y關于t的線性回歸方程;
利用中的回歸方程,分析2012年至2018年該地區(qū)戶均家庭教育投入的變化情況,并預測2019年該地區(qū)戶均家庭教育投入是多少.
附:回歸直線的斜率和截距的最小二乘法估計公式分別為:,.
查看答案和解析>>
科目: 來源: 題型:
【題目】設有下列四個命題:
:若,則;
:若,則;
:“”是“為奇函數(shù)”的充要條件;
:“等比數(shù)列中,”是“等比數(shù)列是遞減數(shù)列”的充要條件.
其中,真命題的是
A. ,B. ,C. ,D. ,
查看答案和解析>>
科目: 來源: 題型:
【題目】過點作互相垂直的直線,,交正半軸于點,交正半軸于點,則線段中點軌跡方程為_______________________;過原點與、、四點的圓半徑的最小值為______________.
查看答案和解析>>
科目: 來源: 題型:
【題目】改革開放以來,我國經(jīng)濟持續(xù)高速增長如圖給出了我國2003年至2012年第二產(chǎn)業(yè)增加值與第一產(chǎn)業(yè)增加值的差值以下簡稱為:產(chǎn)業(yè)差值的折線圖,記產(chǎn)業(yè)差值為單位:萬億元.
求出y關于年份代碼t的線性回歸方程;
利用中的回歸方程,分析2003年至2012年我國產(chǎn)業(yè)差值的變化情況,并預測我國產(chǎn)業(yè)差值在哪一年約為34萬億元;
結合折線圖,試求出除去2007年產(chǎn)業(yè)差值后剩余的9年產(chǎn)業(yè)差值的平均值及方差結果精確到.
附:回歸直線的斜率和截距的最小二乘法估計公式分別為:,.
樣本方差公式:.
參考數(shù)據(jù):,,.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖所示,在等腰梯形ABCD中,,,E,F為AB的三等分點,且將和分別沿DE、CF折起到A、B兩點重合,記為點P.
證明:平面平面PEF;
若,求PD與平面PFC所成角的正弦值.
查看答案和解析>>
科目: 來源: 題型:
【題目】設有下列四個命題:
:若,則;
:若,則;
:“”是“為奇函數(shù)”的充要條件;
:“等比數(shù)列中,”是“等比數(shù)列是遞減數(shù)列”的充要條件.
其中,真命題的是
A. ,B. ,C. ,D. ,
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,矩形中,,,是線段上一點且滿足,是線段上一動點,把沿折起得到,使得平面平面,分別記,與平面所成角為,,平面與平面所成銳角為,則:( )
A.B.C.D.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓的離心率為,右焦點為,左頂點為A,右頂點B在直線上.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設點P是橢圓C上異于A,B的點,直線交直線于點,當點運動時,判斷以為直徑的圓與直線PF的位置關系,并加以證明.
查看答案和解析>>
科目: 來源: 題型:
【題目】有下列四個命題:
(1)“若,則,互為倒數(shù)”的逆命題;
(2)“面積相等的三角形全等”的否命題;
(3)“若,則無實數(shù)解”的否命題;
(4)命題:“空間中到一個正四面體的六條棱所在的直線距離均相等的點有且只有個”; 其中真命題( )
A.(1)(2)B.(2)(3)C.(1)(2)(3)D.(1)(2)(4)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com