【題目】已知橢圓的離心率為,右焦點為,左頂點為A,右頂點B在直線上.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)點P是橢圓C上異于A,B的點,直線交直線于點,當(dāng)點運動時,判斷以為直徑的圓與直線PF的位置關(guān)系,并加以證明.
【答案】(Ⅰ);(Ⅱ)以BD為直徑的圓與直線PF相切.
【解析】
(Ⅰ)根據(jù)條件解得a,b值,(Ⅱ)設(shè)點P(x0,y0),解得D點坐標(biāo),即得以BD為直徑的圓圓心坐標(biāo)以及半徑,再根據(jù)直線PF方程,利用圓心到直線PF距離與半徑大小關(guān)系作判斷.
(Ⅰ)依題可知B(a,0),a=2,因為,所以c=1,
故橢圓C的方程為.
(Ⅱ)以BD為直徑的圓與直線PF相切.
證明如下:設(shè)點P(x0,y0),則
①當(dāng)x0=1時,點P的坐標(biāo)為(1,±),直線PF的方程為x=1,
D的坐標(biāo)為(2,±2).
此時以BD為直徑的圓與直線PF相切.
②當(dāng)≠1時直線AP的方程為,
點D的坐標(biāo)為,BD中點E的坐標(biāo)為,故
直線PF的斜率為,
故直線PF的方程為,即,
所以點E到直線PF的距離,故以BD為直徑的圓與直線PF相切.
綜上得,當(dāng)點P運動時,以BD為直徑的圓與直線PF相切.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知.
(1)求的單調(diào)區(qū)間;
(2)若(其中為自然對數(shù)的底數(shù)),且恒成立,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在一次抽獎活動中,有,,,,,共6人獲得抽獎機會,抽獎規(guī)則如下:若獲一等獎后不再參加抽獎,獲得二等獎的仍參加三等獎抽獎.現(xiàn)在主辦方先從6人中隨機抽取2人均獲一等獎,再從余下的4人中隨機抽取1人獲二等獎,最后還從這4人中隨機抽取1人獲三等獎.
(1)求能獲一等獎的概率;
(2)若,已獲一等獎,求能獲獎的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),在區(qū)間上有最大值,最小值,設(shè)函數(shù).
(1)求的值;
(2)不等式在上恒成立,求實數(shù)的取值范圍;
(3)方程有三個不同的實數(shù)解,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:的左右焦點分別為,,,為橢圓上的兩動點,且以,,,四個點為頂點的凸四邊形的面積的最大值為.
(1)求橢圓的離心率;
(2)若橢圓經(jīng)過點,且直線的斜率是直線,的斜率的等比中項,求面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】過點作互相垂直的直線,,交正半軸于點,交正半軸于點,則線段中點軌跡方程為_______________________;過原點與、、四點的圓半徑的最小值為______________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形中,,,,四邊形為矩形,平面平面,,點在線段上運動,且.
(1)當(dāng)時,求異面直線與所成角的大小;
(2)設(shè)平面與平面所成二面角的大小為(),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,用四種不同的顏色給圖中的A,B,C,D,E,F,G七個點涂色,要求每個點涂一種顏色,且圖中每條線段的兩個端點涂不同顏色,則不同的涂色方法有( )
A.192B.336C.600D.以上答案均不對
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com