【題目】四個同樣大小的球,,,兩兩相切,點是球上的動點,則直線與直線所成角的余弦值的取值范圍為(

A.B.C.D.

【答案】C

【解析】

因為四個同樣大小的球,,,兩兩相切,可得是正四面體,設(shè)邊長為,過底面,運(yùn)用線面垂直的性質(zhì),即可得到所成角的最大值,再由大圓的切線計算可得所成角的最小值,即可求得直線與直線所成角的余弦值的取值范圍.

如圖

是正四面體,設(shè)邊長為,

底面可得為底面的中心,

,可得,在直線上時,

可得直線與直線垂直,即有所成角的余弦值為,

,,在平面內(nèi),作球的切線,

設(shè)切點為,此時最大,可得

成的最大角,

的最小值為,

成的最小角為,即有所成角的余弦值為

直線與直線所成角的余弦值的取值范圍為.

故選:C.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某農(nóng)科所對冬季晝夜溫差大小與某反季節(jié)大豆新品種發(fā)芽多少之間進(jìn)行分析研究,他們分別記錄了121日至125日的每天晝夜溫差與實驗室每天每100棵種子中的發(fā)芽數(shù),得到如下資料:

日期

121

122

123

124

125

溫差攝氏度

10

11

13

12

8

發(fā)芽

23

25

30

26

16

該農(nóng)科所確定的研究方案是:先從這5組數(shù)據(jù)中選取3組數(shù)據(jù)求線性回歸方程,再用剩下的2組數(shù)據(jù)進(jìn)行檢驗.

(1)若選取的3組數(shù)據(jù)恰好是連續(xù)天的數(shù)據(jù)(表示數(shù)據(jù)來自互不相鄰的三天),求的分布列及期望:

(2)根據(jù)122日至4日數(shù)據(jù),求出發(fā)芽數(shù)關(guān)于溫差的線性回歸方程.由所求得線性回歸方稻得到的估計數(shù)據(jù)與剩下的檢驗數(shù)據(jù)的誤差均不超過2顆,則認(rèn)為得到的線性回歸方程是可靠的,試問所得的線性回歸方程是否可靠?

附:參考公式:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某農(nóng)科所對冬季晝夜溫差大小與某反季節(jié)大豆新品種發(fā)芽多少之間的關(guān)系進(jìn)行分析研究,他們分別記錄了121日至125日的每天晝夜溫差與實驗室每天每100顆種子中的發(fā)芽數(shù),得到如下資料:

日期

122

123

124

溫差

11

13

12

發(fā)芽數(shù)(顆)

25

30

26

1)請根據(jù)122日至124日的數(shù)據(jù),求出關(guān)于的線性回歸方程;

2)該農(nóng)科所確定的研究方案是:先用上面的3組數(shù)據(jù)求線性回歸方程,再選取2組數(shù)據(jù)進(jìn)行檢驗.若125日溫差為,發(fā)芽數(shù)16顆,126日溫差為,發(fā)芽數(shù)23顆.由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過2顆,則認(rèn)為得到的線性回歸方程是可靠的,試問(1)中所得的線性回歸方程是否可靠?

注:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知多面體,,,均垂直于平面,,,,

(1)證明:⊥平面;

(2)求直線與平面所成的角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】求滿足下列條件的曲線的方程:

1)離心率為,長軸長為6的橢圓的標(biāo)準(zhǔn)方程

2)與橢圓有相同焦點,且經(jīng)過點的雙曲線的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】改革開放以來,我國經(jīng)濟(jì)持續(xù)高速增長如圖給出了我國2003年至2012年第二產(chǎn)業(yè)增加值與第一產(chǎn)業(yè)增加值的差值以下簡稱為:產(chǎn)業(yè)差值的折線圖,記產(chǎn)業(yè)差值為單位:萬億元

求出y關(guān)于年份代碼t的線性回歸方程;

利用中的回歸方程,分析2003年至2012年我國產(chǎn)業(yè)差值的變化情況,并預(yù)測我國產(chǎn)業(yè)差值在哪一年約為34萬億元;

結(jié)合折線圖,試求出除去2007年產(chǎn)業(yè)差值后剩余的9年產(chǎn)業(yè)差值的平均值及方差結(jié)果精確到

附:回歸直線的斜率和截距的最小二乘法估計公式分別為:,

樣本方差公式:

參考數(shù)據(jù):,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等差數(shù)列前5項和為50, ,數(shù)列的前項和為, .

(Ⅰ)求數(shù)列, 的通項公式;

(Ⅱ)若數(shù)列滿足, ,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在由數(shù)字12,3,4,5組成的所有沒有重復(fù)數(shù)字的四位數(shù)中,大于3145且小于4231的數(shù)共有(

A.27B.28C.29D.30

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】數(shù)列滿足對任意的恒成立,為其前項的和,且

(1)求數(shù)列的通項

(2)數(shù)列滿足,其中

①證明:數(shù)列為等比數(shù)列;

②求集合

查看答案和解析>>

同步練習(xí)冊答案