科目: 來(lái)源: 題型:
【題目】設(shè)曲線所圍成的封閉區(qū)域?yàn)?/span>D.
(1)求區(qū)域D的面積;
(2)設(shè)過(guò)點(diǎn)的直線與曲線C交于兩點(diǎn)P、Q,求的最大值.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】(1)已知P是矩形ABCD所在平面上的一點(diǎn),則有.試證明該命題.
(2)將上述命題推廣到P為空間上任一點(diǎn)的情形,寫出這個(gè)推廣后的命題并加以證明.
(3)將矩形ABCD進(jìn)一步推廣到長(zhǎng)方體,并利用(2)得到的命題建立并證明一個(gè)新命題.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】棋盤上標(biāo)有第0,1,2,,100站,棋子開(kāi)始時(shí)位于第0站,棋手拋擲均勻硬幣走跳棋游戲.若擲出正面,棋子向前跳出一站;若擲出反面,棋子向前跳出兩站,直到跳到第99站(勝利大本營(yíng))或第100站(失敗集中營(yíng))是,游戲結(jié)束.設(shè)棋子跳到第n站的概率為.
(1)求的值;
(2)證明:;
(3)求的值.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】(本小題滿分12分)(注意:在試題卷上作答無(wú)效)
如圖,四棱錐S-ABCD中,SD底面ABCD,AB//DC,ADDC,AB=AD=1,DC=SD=2,E為棱SB上的一點(diǎn),平面EDC平面SBC .
(Ⅰ)證明:SE=2EB;
(Ⅱ)求二面角A-DE-C的大小.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,動(dòng)圓與圓外切,與圓內(nèi)切.
(1)求動(dòng)圓圓心的軌跡方程;
(2)直線過(guò)點(diǎn)且與動(dòng)圓圓心的軌跡交于、兩點(diǎn).是否存在面積的最大值,若存在,求出的面積;若不存在,說(shuō)明理由.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】已知是拋物線上一點(diǎn),經(jīng)過(guò)點(diǎn)的直線與拋物線交于、兩點(diǎn)(不同于點(diǎn)),直線、分別交直線于點(diǎn)、.
(1)求拋物線方程及其焦點(diǎn)坐標(biāo);
(2)求證:以為直徑的圓恰好經(jīng)過(guò)原點(diǎn).
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】(1)已知圓過(guò)點(diǎn),且與直線相切于點(diǎn),求圓的方程;
(2)已知圓與軸相切,圓心在直線上,且圓被直線截得的弦長(zhǎng)為,求圓的方程.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】下列說(shuō)法中所有正確的序號(hào)是_________
①兩直線的傾斜角相等,則斜率必相等;
②若動(dòng)點(diǎn)到定點(diǎn)和定直線的距離相等,則動(dòng)點(diǎn)的軌跡是拋物線;
③已知、是橢圓的兩個(gè)焦點(diǎn),過(guò)點(diǎn)的直線與橢圓交于、兩點(diǎn),則的周長(zhǎng)為;
④曲線的參數(shù)方程為為參數(shù),則它表示雙曲線且漸近線方程為;
⑤已知正方形,則以、為焦點(diǎn),且過(guò)、兩點(diǎn)的橢圓的離心率為.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】已知函數(shù),,.
(1)當(dāng)時(shí),求的單調(diào)區(qū)間;
(2)設(shè),若,為函數(shù)的兩個(gè)不同極值點(diǎn),證明:.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】如圖,點(diǎn)為圓:上一動(dòng)點(diǎn),過(guò)點(diǎn)分別作軸,軸的垂線,垂足分別為,,連接延長(zhǎng)至點(diǎn),使得,點(diǎn)的軌跡記為曲線.
(1)求曲線的方程;
(2)若點(diǎn),分別位于軸與軸的正半軸上,直線與曲線相交于,兩點(diǎn),試問(wèn)在曲線上是否存在點(diǎn),使得四邊形為平行四邊形,若存在,求出直線方程;若不存在,說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com