【題目】已知是拋物線上一點,經(jīng)過點的直線與拋物線交于、兩點(不同于點),直線分別交直線于點、.

1)求拋物線方程及其焦點坐標;

2)求證:以為直徑的圓恰好經(jīng)過原點.

【答案】1)拋物線方程為,焦點坐標為;(2)證明見解析.

【解析】

1)將點的坐標代入拋物線的方程,求出的值,可得出拋物線的方程,并求出拋物線的焦點坐標;

2)設(shè),,設(shè)直線的方程為,其中,將直線的方程與拋物線的方程聯(lián)立,列出韋達定理,利用向量共線求出點的坐標,然后將韋達定理代入,利用向量數(shù)量積的坐標運算計算出,即可證明出結(jié)論成立.

1)將代入,得,因此,拋物線方程為,焦點坐標為;

2)設(shè),、.

因為直線不經(jīng)過點,所以直線一定有斜率,設(shè)直線方程為,

與拋物線方程聯(lián)立得到,消去,得,

則由韋達定理得,.

,

,,即,

顯然,,,

則點,同理可求得點的坐標為

所以,,

,因此,以為直徑的圓過原點.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】5G網(wǎng)絡(luò)是第五代移動通信網(wǎng)絡(luò),其峰值理論傳輸速度可達每81GB,比4G網(wǎng)絡(luò)的傳輸速度快數(shù)百倍.舉例來說,一部1G的電影可在8秒之內(nèi)下載完成.隨著5G技術(shù)的誕生,用智能終端分享3D電影、游戲以及超高畫質(zhì)(UHD)節(jié)目的時代正向我們走來.某手機網(wǎng)絡(luò)研發(fā)公司成立一個專業(yè)技術(shù)研發(fā)團隊解決各種技術(shù)問題,其中有數(shù)學專業(yè)畢業(yè),物理專業(yè)畢業(yè),其它專業(yè)畢業(yè)的各類研發(fā)人員共計1200人.現(xiàn)在公司為提高研發(fā)水平,采用分層抽樣抽取400人按分數(shù)對工作成績進行考核,并整理得如上頻率分布直方圖(每組的頻率視為概率).

1)從總體的1200名學生中隨機抽取1人,估計其分數(shù)小于50的概率;

2)研發(fā)公司決定對達到某分數(shù)以上的研發(fā)人員進行獎勵,要求獎勵研發(fā)人員的人數(shù)達到30%,請你估計這個分數(shù)的值;

3)已知樣本中有三分之二的數(shù)學專業(yè)畢業(yè)的研發(fā)人員分數(shù)不低于70分,樣本中不低于70分的數(shù)學專業(yè)畢業(yè)的研發(fā)人員人數(shù)與物理及其它專業(yè)畢業(yè)的研發(fā)人員的人數(shù)和相等,估計總體中數(shù)學專業(yè)畢業(yè)的研發(fā)人員的人數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】

(本題滿分15分)已知m1,直線,

橢圓分別為橢圓的左、右焦點.

)當直線過右焦點時,求直線的方程;

)設(shè)直線與橢圓交于兩點,

的重心分別為.若原點在以線段

為直徑的圓內(nèi),求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,點為圓上一動點,過點分別作軸,軸的垂線,垂足分別為,,連接延長至點,使得,點的軌跡記為曲線.

(1)求曲線的方程;

(2)若點,分別位于軸與軸的正半軸上,直線與曲線相交于,兩點,試問在曲線上是否存在點,使得四邊形為平行四邊形,若存在,求出直線方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,動圓與圓外切,與圓內(nèi)切.

1)求動圓圓心的軌跡方程;

2)直線過點且與動圓圓心的軌跡交于、兩點.是否存在面積的最大值,若存在,求出的面積;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)曲線所圍成的封閉區(qū)域為D.

1)求區(qū)域D的面積;

2)設(shè)過點的直線與曲線C交于兩點P、Q,求的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知梯形中,,,,,上的點,的中點,沿將梯形折起,使平面平面.

1)當時,求證:;

2)記以為頂點的三棱錐的體積為,求的最大值;

3)當取得最大值時,求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列說法中正確的是( )

A. ”是“”成立的充分不必要條件

B. 命題,則

C. 為了了解800名學生對學校某項教改試驗的意見,用系統(tǒng)抽樣的方法從中抽取一個容量為40的樣本,則分組的組距為40

D. 已知回歸直線的斜率的估計值為1.23,樣本點的中心為,則回歸直線方程為.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)若函數(shù)上有2個零點,求實數(shù)的取值范圍.(注

(2)設(shè),若函數(shù)恰有兩個不同的極值點,,證明:.

查看答案和解析>>

同步練習冊答案