相關(guān)習(xí)題
 0  262442  262450  262456  262460  262466  262468  262472  262478  262480  262486  262492  262496  262498  262502  262508  262510  262516  262520  262522  262526  262528  262532  262534  262536  262537  262538  262540  262541  262542  262544  262546  262550  262552  262556  262558  262562  262568  262570  262576  262580  262582  262586  262592  262598  262600  262606  262610  262612  262618  262622  262628  262636  266669 

科目: 來(lái)源: 題型:

【題目】如圖,在四棱錐中,底面是矩形, 垂直于底面, ,點(diǎn)為線段(不含端點(diǎn))上一點(diǎn).

(1)當(dāng)是線段的中點(diǎn)時(shí),求與平面所成角的正弦值;

(2)已知二面角的正弦值為,求的值.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】已知二次函數(shù),有兩個(gè)零點(diǎn)為

1)求、的值;

2)證明:;

3)用單調(diào)性定義證明函數(shù)在區(qū)間上是增函數(shù);

4)求在區(qū)間上的最小值

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】已知函數(shù)為自然對(duì)數(shù)的底數(shù))

1)若曲線在點(diǎn)處的切線平行于軸,求的值;

2)求函數(shù)的極值;

3)當(dāng)時(shí),若直線與曲線沒(méi)有公共點(diǎn),求的最大值.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】已知函數(shù)

(Ⅰ)求曲線處的切線方程;

(Ⅱ)當(dāng)時(shí),求的零點(diǎn)個(gè)數(shù);

(Ⅲ)若函數(shù)上是增函數(shù),求證:

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】如圖所示,正四棱錐中,為底面正方形的中心,側(cè)棱與底面所成的角的正切值為

1)求側(cè)面與底面所成的二面角的大小;

2)若的中點(diǎn),求異面直線所成角的正切值;

3)問(wèn)在棱上是否存在一點(diǎn),使⊥側(cè)面,若存在,試確定點(diǎn)的位置;若不存在,說(shuō)明理由.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】

如圖,在三棱錐P—ABC中,PC⊥底面ABC,AB⊥BC,D,E分別是AB,PB的中點(diǎn).

)求證:DE∥平面PAC

)求證:AB⊥PB;

)若PCBC,求二面角P—AB—C的大。

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】如圖,在四棱錐中,底面是平行四邊形,,側(cè)面底面,,.

(Ⅰ)求證:平面;

(Ⅱ)過(guò)的平面交于點(diǎn),若平面把四面體分成體積相等的兩部分,求二面角的余弦值.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】設(shè)點(diǎn)為橢圓的右焦點(diǎn),點(diǎn)在橢圓上,已知橢圓的離心率為.

(Ⅰ)求橢圓的方程;

(Ⅱ)設(shè)過(guò)右焦點(diǎn)的直線與橢圓相交于,兩點(diǎn),記三條邊所在直線的斜率的乘積為,求的最大值.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】三棱柱中,平面是邊長(zhǎng)為的等邊三角形,邊中點(diǎn),且.

(1)求證:平面平面;

(2)求證:平面

(3)求三棱錐的體積.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】2018年國(guó)際乒聯(lián)總決賽在韓國(guó)仁川舉行,比賽時(shí)間為12131216日,在男子單打項(xiàng)目,中國(guó)隊(duì)準(zhǔn)備選派4人參加.已知國(guó)家一線隊(duì)共6名隊(duì)員,二線隊(duì)共4名隊(duì)員.

1)求恰好有3名國(guó)家一線隊(duì)隊(duì)員參加比賽的概率;

2)設(shè)隨機(jī)變量表示參加比賽的國(guó)家二線隊(duì)隊(duì)員的人數(shù),求的分布列.

查看答案和解析>>

同步練習(xí)冊(cè)答案