相關(guān)習(xí)題
 0  261987  261995  262001  262005  262011  262013  262017  262023  262025  262031  262037  262041  262043  262047  262053  262055  262061  262065  262067  262071  262073  262077  262079  262081  262082  262083  262085  262086  262087  262089  262091  262095  262097  262101  262103  262107  262113  262115  262121  262125  262127  262131  262137  262143  262145  262151  262155  262157  262163  262167  262173  262181  266669 

科目: 來源: 題型:

【題目】如圖,四棱錐PABC中,PA⊥底面ABCDAD∥BC,AB=AD=AC=3PA=BC=4M為線段AD上一點,AM=2MD,NPC的中點.

)證明MN∥平面PAB;

)求直線AN與平面PMN所成角的正弦值.

查看答案和解析>>

科目: 來源: 題型:

【題目】現(xiàn)需要設(shè)計一個倉庫,它由上下兩部分組成,上部分的形狀是正四棱錐,下部分的形狀是正四棱柱如圖所示,并要求正四棱柱的高是正四棱錐的高的4倍.

1則倉庫的容積是多少?

2若正四棱錐的側(cè)棱長為,則當(dāng)為多少時,倉庫的容積最大?

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù)f(x)=.

1)若函數(shù)f(x)的圖像中相鄰兩條對稱軸間的距離不小于,求的取值范圍;

2)若函數(shù)f(x)的最小正周期為π,且當(dāng)x時,f(x)的最大值是,求函數(shù)f(x)的最小值,并說明如何由函數(shù)y=sin2x的圖象變換得到函數(shù)y=f(x)的圖象.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,底面 是邊長為1的正方形,平面,與平面所成角為60°.

1)求證: 平面;

2)求二面角的余弦值.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知是奇函數(shù)的導(dǎo)函數(shù),,當(dāng)時,,則使得成立的的取值范圍是( )

A. B.

C. D.

查看答案和解析>>

科目: 來源: 題型:

【題目】給出下列四個命題:

①函數(shù)y=2sin的圖象的一條對稱軸是x=;

②函數(shù)y=tanx的圖象關(guān)于點對稱;

③若sin=sin,則x1-x2=,其中kZ;

④函數(shù),x[0,2π]的圖象與直線y=k有且僅有兩個不同的交點,則k的取值范圍為(1,3).

其中正確的有____(填寫所有正確命題的序號).

查看答案和解析>>

科目: 來源: 題型:

【題目】=2sinωx+φ),x∈R,其中ω0﹣πφ≤π.若函數(shù)fx)的最小正周期為,且當(dāng)x=時,fx)取得最大值,則( )

A. fx)在區(qū)間[﹣2π,0]上是增函數(shù)B. fx)在區(qū)間[﹣3π﹣π]上是增函數(shù)

C. fx)在區(qū)間[3π,5π]上是減函數(shù)D. fx)在區(qū)間[4π6π]上是減函數(shù)

查看答案和解析>>

科目: 來源: 題型:

【題目】《九章算術(shù)》是我國古代內(nèi)容極為豐富的數(shù)學(xué)名著,卷一《方田》中有如下兩個問題:

[三三]今有宛田,下周三十步,徑十六步.問為田幾何?

[三四]又有宛田,下周九十九步,徑五十一步.問為田幾何?

翻譯為:[三三]現(xiàn)有扇形田,弧長30步,直徑長16.問這塊田面積是多少?

[三四]又有一扇形田,弧長99步,直徑長51.問這塊田面積是多少?

則下列說法正確的是(

A.問題[三三]中扇形的面積為240平方步B.問題[三四]中扇形的面積為平方步

C.問題[三三]中扇形的面積為60平方步D.問題[三四]中扇形的面積為平方步

查看答案和解析>>

科目: 來源: 題型:

【題目】已知圓,點為平面內(nèi)一動點,以線段為直徑的圓內(nèi)切于圓,設(shè)動點的軌跡為曲線.

(Ⅰ)求曲線的方程;

(Ⅱ) 是曲線上的動點,且直線經(jīng)過定點,問在軸上是否存在定點,使得,若存在,請求出定點,若不存在,請說明理由.

查看答案和解析>>

科目: 來源: 題型:

【題目】光伏發(fā)電是將光能直接轉(zhuǎn)變?yōu)殡娔艿囊环N技術(shù),具有資源的充足性及潛在的經(jīng)濟性等優(yōu)點,在長期的能源戰(zhàn)略中具有重要地位,2015年起,國家能源局、國務(wù)院扶貧辦聯(lián)合在6省的30個縣開展光伏扶貧試點,在某縣居民中隨機抽取50戶,統(tǒng)計其年用量得到以下統(tǒng)計表.以樣本的頻率作為概率.

用電量(單位:度)

戶數(shù)

7

8

15

13

7

(Ⅰ)在該縣居民中隨機抽取10戶,記其中年用電量不超過600度的戶數(shù)為,求的數(shù)學(xué)期望;

(Ⅱ)在總結(jié)試點經(jīng)驗的基礎(chǔ)上,將村級光伏電站穩(wěn)定為光伏扶貧的主推方式.已知該縣某自然村有居民300戶.若計劃在該村安裝總裝機容量為300千瓦的光伏發(fā)電機組,該機組所發(fā)電量除保證該村正常用電外,剩余電量國家電網(wǎng)以0.8元/度的價格進行收購.經(jīng)測算每千瓦裝機容量的發(fā)電機組年平均發(fā)電1000度,試估計該機組每年所發(fā)電量除保證正常用電外還能為該村創(chuàng)造直接受益多少元?

查看答案和解析>>

同步練習(xí)冊答案