【題目】《九章算術(shù)》是我國古代內(nèi)容極為豐富的數(shù)學(xué)名著,卷一《方田》中有如下兩個問題:

[三三]今有宛田,下周三十步,徑十六步.問為田幾何?

[三四]又有宛田,下周九十九步,徑五十一步.問為田幾何?

翻譯為:[三三]現(xiàn)有扇形田,弧長30步,直徑長16.問這塊田面積是多少?

[三四]又有一扇形田,弧長99步,直徑長51.問這塊田面積是多少?

則下列說法正確的是(

A.問題[三三]中扇形的面積為240平方步B.問題[三四]中扇形的面積為平方步

C.問題[三三]中扇形的面積為60平方步D.問題[三四]中扇形的面積為平方步

【答案】B

【解析】

根據(jù)題意,利用扇形的面積公式求解即可.

依題意,問題[三三]中扇形的面積為平方步,

問題[三四]中扇形的面積為平方步.

故選:B

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知橢圓ab>0的離心率,過點的直線與原點的距離為

1求橢圓的方程

2已知定點,若直線與橢圓交于C、D兩點是否存在k的值,使以CD為直徑的圓過E點?請說明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線:,點

(1)求點關(guān)于直線的對稱點的坐標(biāo);

(2)直線關(guān)于點對稱的直線的方程;

(3)以為圓心,3為半徑長作圓,直線過點,且被圓截得的弦長為,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某種產(chǎn)品的廣告費用支出與銷售額之間有如下的對應(yīng)數(shù)據(jù):

2

4

5

6

8

30

40

60

50

70

1)畫出散點圖;

2)求回歸直線方程;

3)據(jù)此估計廣告費用為10時,銷售收入的值.

參考公式及數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)在同一個周期內(nèi),當(dāng)y取最大值1,當(dāng)時,y取最小值﹣1

(1)求函數(shù)的解析式y=f(x);

(2)函數(shù)y=sinx的圖象經(jīng)過怎樣的變換可得到y=f(x)的圖象?

(3)若函數(shù)f(x)滿足方程f(x)=a(0<a<1),求在[0,2π]內(nèi)的所有實數(shù)根之和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=.

1)若函數(shù)f(x)的圖像中相鄰兩條對稱軸間的距離不小于,求的取值范圍;

2)若函數(shù)f(x)的最小正周期為π,且當(dāng)x時,f(x)的最大值是,求函數(shù)f(x)的最小值,并說明如何由函數(shù)y=sin2x的圖象變換得到函數(shù)y=f(x)的圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某研究機構(gòu)對高三學(xué)生的記憶力x和判斷力y進行統(tǒng)計分析,得下表數(shù)據(jù):

x

6

8

10

12

y

2

3

5

6

1)請在圖中畫出上表數(shù)據(jù)的散點圖;

2)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程;

3)試根據(jù)(2)求出的線性回歸方程,預(yù)測記憶力為9的同學(xué)的判斷力.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù),且),以為極點, 軸的正半軸為極軸,建立極坐標(biāo)系,直線 的極坐標(biāo)方程為

(1)若曲線只有一個公共點,求的值;

(2), 為曲線上的兩點,且,求的面積最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】拋擲一個質(zhì)地均勻的骰子的試驗,事件A表示“小于5的偶數(shù)點出現(xiàn)”,事件B表示“不小于5的點數(shù)出現(xiàn)”,則一次試驗中,事件A或事件B至少有一個發(fā)生的概率為(

A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案