科目: 來源: 題型:
【題目】已知兩圓的圓心分別為,P為一個(gè)動(dòng)點(diǎn),且直線的斜率之積為.
(Ⅰ)求動(dòng)點(diǎn)P的軌跡M的方程;
(Ⅱ)是否存在過點(diǎn)A(2,0)的直線l與軌跡M交于不同的兩點(diǎn)C、D,使得?若存在,求直線l的方程;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】在等腰中, ,腰長(zhǎng)為, 、分別是邊、的中點(diǎn),將沿翻折,得到四棱錐,且為棱中點(diǎn), .
(Ⅰ)求證: 平面;
(Ⅱ)在線段上是否存在一點(diǎn),使得平面?若存在,求二面角的余弦值,若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】某高中生調(diào)查了當(dāng)?shù)啬承^(qū)的50戶居民由于臺(tái)風(fēng)造成的經(jīng)濟(jì)損失,將收集的數(shù)據(jù)分成三組,并作出如下頻率分布直方圖:
(1)在直方圖的經(jīng)濟(jì)損失分組中,以各組的區(qū)間中點(diǎn)值代表該組的各個(gè)值,并以經(jīng)濟(jì)損失落入該區(qū)間的頻率作為經(jīng)濟(jì)損失取該區(qū)間中點(diǎn)值的概率(例如:經(jīng)濟(jì)損失則取,且的概率等于經(jīng)濟(jì)損失落入的頻率),F(xiàn)從當(dāng)?shù)氐木用裰须S機(jī)抽出2戶進(jìn)行捐款援助,設(shè)抽出的2戶的經(jīng)濟(jì)損失的和為,求的分布列和數(shù)學(xué)期望.
(2)臺(tái)風(fēng)后居委會(huì)號(hào)召小區(qū)居民為臺(tái)風(fēng)重災(zāi)區(qū)捐款,此高中生調(diào)查的50戶居民捐款情況如下表,在表格空白處填寫正確數(shù)字,并說明是否有95%以上的把握認(rèn)為捐款數(shù)額多于或少于500元和自身經(jīng)濟(jì)損失是否到4000元有關(guān)?
經(jīng)濟(jì)損失不超過4000元 | 經(jīng)濟(jì)損失超過4000元 | 合計(jì) | |
捐款超過500元 | 30 | ||
捐款不超過500元 | 6 | ||
合計(jì) |
附:臨界值表參考公式: .
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目: 來源: 題型:
【題目】某廠擬用集裝箱托運(yùn)甲、乙兩種貨物,集裝箱的體積、重量、可獲利潤(rùn)和托運(yùn)能力等限制數(shù)據(jù)列在表中,如何設(shè)計(jì)甲、乙兩種貨物應(yīng)各托運(yùn)的箱數(shù)可以獲得最大利潤(rùn),最大利潤(rùn)是多少?
貨物 | 體積箱 | 重量箱 | 利潤(rùn)百元箱 |
甲 | 5 | 2 | 20 |
乙 | 4 | 5 | 10 |
托運(yùn)限制 | 24 | 13 |
查看答案和解析>>
科目: 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為(限定).
(1)寫出曲線的極坐標(biāo)方程,并求與交點(diǎn)的極坐標(biāo);
(2)射線與曲線與分別交于點(diǎn)(異于原點(diǎn)),求的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在四棱錐中,底面是邊長(zhǎng)為的正方形, 為等邊三角形, , 分別是, 的中點(diǎn), .
(Ⅰ)求證:平面平面;
(Ⅱ)求點(diǎn)到平面的距離.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)是定義域?yàn)?/span>的奇函數(shù),當(dāng)時(shí),.
()求出函數(shù)在上的解析式;
()畫出函數(shù)的圖象,并根據(jù)圖象直接寫出的單調(diào)區(qū)間;
()求使時(shí)的的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】(本小題共14分)如圖,在三棱錐中, 底面
,點(diǎn), 分別在棱上,且(Ⅰ)求證: 平面;(Ⅱ)當(dāng)為的中點(diǎn)時(shí),求與平面所成的角的大小;(Ⅲ)是否存在點(diǎn)使得二面角為直二面角?并說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)有兩個(gè)極值點(diǎn), ().
(1)求實(shí)數(shù)的取值范圍;
(2)設(shè),若函數(shù)的兩個(gè)極值點(diǎn)恰為函數(shù)的兩個(gè)零點(diǎn),當(dāng)時(shí),求的最小值.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓的左右焦點(diǎn)分別為, 上的動(dòng)點(diǎn)到兩焦點(diǎn)的距離之和為4,當(dāng)點(diǎn)運(yùn)動(dòng)到橢圓的上頂點(diǎn)時(shí),直線恰與以原點(diǎn)為圓心,以橢圓的離心率為半徑的圓相切.
(1)求橢圓的方程;
(2)設(shè)橢圓的左右頂點(diǎn)分別為,若交直線于兩點(diǎn).問以為直徑的圓是否過定點(diǎn)?若過定點(diǎn),請(qǐng)求出該定點(diǎn)坐標(biāo);若不過定點(diǎn),請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com