【題目】已知橢圓的左右焦點(diǎn)分別為, 上的動(dòng)點(diǎn)到兩焦點(diǎn)的距離之和為4,當(dāng)點(diǎn)運(yùn)動(dòng)到橢圓的上頂點(diǎn)時(shí),直線恰與以原點(diǎn)為圓心,以橢圓的離心率為半徑的圓相切.

(1)求橢圓的方程;

(2)設(shè)橢圓的左右頂點(diǎn)分別為,若交直線兩點(diǎn).問(wèn)以為直徑的圓是否過(guò)定點(diǎn)?若過(guò)定點(diǎn),請(qǐng)求出該定點(diǎn)坐標(biāo);若不過(guò)定點(diǎn),請(qǐng)說(shuō)明理由.

【答案】(1);(2)

【解析】試題分析:(1)由橢圓定義可知,,由原點(diǎn)到直線的距離求出,得到橢圓的標(biāo)準(zhǔn)方程;(2)設(shè),,則,,由,得,求出M,N的坐標(biāo),因?yàn)?/span>,故以為直徑的圓與軸交于兩點(diǎn),在以為直徑的圓中應(yīng)用相交弦定理求出,從而以為直徑的圓恒過(guò)兩個(gè)定點(diǎn),.

試題解析:(1)由橢圓定義可知,

直線,

,

,

故橢圓的標(biāo)準(zhǔn)方程為:.

(2)設(shè),點(diǎn),則,,

,得:,

直線方程為:,令,則,故;

直線方程為:,令,則,故;

因?yàn)?/span>,故以為直徑的圓與軸交于兩點(diǎn),設(shè)為,

在以為直徑的圓中應(yīng)用相交弦定理得:

因?yàn)?/span>,所以,

從而以為直徑的圓恒過(guò)兩個(gè)定點(diǎn),.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若由方程x2y2=0和x2+(yb)2=2所組成的方程組至多有兩組不同的實(shí)數(shù)解,則實(shí)數(shù)b的取值范圍是(  )

A. b≥2b≤-2 B. b≥2或b≤-2

C. -2≤b≤2 D. -2b≤2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知某運(yùn)動(dòng)員每次投籃命中的概率都為,現(xiàn)采用隨機(jī)模擬的方法估計(jì)該運(yùn)動(dòng)員三次投籃都命中的概率:先由計(jì)算機(jī)產(chǎn)生0到9之間取整數(shù)值的隨機(jī)數(shù),指定1,2,3,4,5表示命中;6,7,8,9,0表示不命中,再以每三個(gè)隨機(jī)數(shù)為一組,代表三次投籃的結(jié)果,經(jīng)隨機(jī)模擬產(chǎn)生了如下20組隨機(jī)數(shù):

162 966 151 525 271 932 592 408 569 683

471 257 333 027 554 488 730 163 537 989

據(jù)此估計(jì),該運(yùn)動(dòng)員三次投籃都命中的概率為

A. 0.15 B. 0.2 C. 0.25 D. 0.35

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了解某冷飲店的經(jīng)營(yíng)狀況,隨機(jī)記錄了該店月的月?tīng)I(yíng)業(yè)額(單位:萬(wàn)元)與月份的數(shù)據(jù),如下表:

(1)求關(guān)于的回歸直線方程;

(2)若在這樣本點(diǎn)中任取兩點(diǎn),求恰有一點(diǎn)在回歸直線上的概率.

附:回歸直線方程中,

,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市每年春節(jié)前后,由于大量的煙花炮竹的燃放,空氣污染較為嚴(yán)重.該市環(huán)保研究所對(duì)近年春節(jié)前后每天的空氣污染情況調(diào)查研究后發(fā)現(xiàn),每天空氣污染的指數(shù)隨時(shí)刻(時(shí))變化的規(guī)律滿足表達(dá)式,其中為空氣治理調(diào)節(jié)參數(shù),且

1)令,求的取值范圍;

2)若規(guī)定每天中的最大值作為當(dāng)天的空氣污染指數(shù),要使該市每天的空氣污染指數(shù)不超過(guò)5,試求調(diào)節(jié)參數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f(x)=|x+2|+|x-2|,x∈R,不等式f(x)≤6的解集為M.

(1)求M;

(2)當(dāng)a2b2M時(shí),證明: |ab|≤|ab+3|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知四棱錐P—ABCD,底面ABCD是邊長(zhǎng)為4的菱形,PA⊥平面ABCD,∠ABC=60°,E、F分別是BC、PC的中點(diǎn).

(Ⅰ)求證:AEPD;

(Ⅱ)若PA=4,求二面角E—AF—C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】通常用、分別表示的三個(gè)內(nèi)角、所對(duì)的邊長(zhǎng),表示的外接圓半徑.

1)如圖,在以為圓心,半徑為的圓中,是圓的弦,其中,角是銳角,求弦的長(zhǎng);

2)在中,若是鈍角,求證:;

3)給定三個(gè)正實(shí)數(shù)、,其中,問(wèn)、滿足怎樣的關(guān)系時(shí),以、為邊長(zhǎng),為外接圓半徑的不存在、存在一個(gè)或存在兩個(gè)(全等的三角形算作同一個(gè))?在存在的情況下,用、、表示.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線的頂點(diǎn)在原點(diǎn),過(guò)點(diǎn)A(-4,4)且焦點(diǎn)在x軸.

(1)求拋物線方程;

(2)直線l過(guò)定點(diǎn)B(-1,0)與該拋物線相交所得弦長(zhǎng)為8,求直線l的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案