相關(guān)習題
 0  260931  260939  260945  260949  260955  260957  260961  260967  260969  260975  260981  260985  260987  260991  260997  260999  261005  261009  261011  261015  261017  261021  261023  261025  261026  261027  261029  261030  261031  261033  261035  261039  261041  261045  261047  261051  261057  261059  261065  261069  261071  261075  261081  261087  261089  261095  261099  261101  261107  261111  261117  261125  266669 

科目: 來源: 題型:

【題目】如圖,在以、、、、為頂點的五面體中,平面平面,四邊形為平行四邊形,且.

(1)求證:;

(2)若,,直線與平面所成角為,求平面與平面所成銳二面角的余弦值.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù),其中為自然對數(shù)的底數(shù).

(1)若處取到極小值,求的值及函數(shù)的單調(diào)區(qū)間;

(2)若當時, 恒成立,求的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知橢圓的下頂點為,右頂點為,離心率,拋物線的焦點為是拋物線上一點,拋物線在點處的切線為,且.

(1)求直線的方程;

(2)若與橢圓相交于兩點,且,求的方程.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,四棱錐中,底面為直角梯形,相交于點,,,三棱錐的體積為9.

(1)求的值;

(2)過點的平面平行于平面與棱,,,分別相交于點,求截面的周長.

查看答案和解析>>

科目: 來源: 題型:

【題目】某校為了推動數(shù)學教學方法的改革,學校將高一年級部分生源情況基本相同的學生分成甲、乙兩個班,每班各40人,甲班按原有模式教學,乙班實施教學方法改革.經(jīng)過一年的教學實驗,將甲、乙兩個班學生一年來的數(shù)學成績?nèi)∑骄鶖?shù)再取整,繪制成如下莖葉圖,規(guī)定不低于85分(百分制)為優(yōu)秀,甲班同學成績的中位數(shù)為74.

(1)求的值和乙班同學成績的眾數(shù);

(2)完成表格,若有以上的把握認為“數(shù)學成績優(yōu)秀與教學改革有關(guān)”的話,那么學校將擴大教學改革面,請問學校是否要擴大改革面?說明理由.

查看答案和解析>>

科目: 來源: 題型:

【題目】某校為了推動數(shù)學教學方法的改革,學校將高一年級部分生源情況基本相同的學生分成甲、乙兩個班,每班各40人,甲班按原有模式教學,乙班實施教學方法改革.經(jīng)過一年的教學實驗,將甲、乙兩個班學生一年來的數(shù)學成績?nèi)∑骄鶖?shù),兩個班學生的平均成績均在,按照區(qū)間,,,進行分組,繪制成如下頻率分布直方圖,規(guī)定不低于80分(百分制)為優(yōu)秀.

完成表格,并判斷是否有以上的把握認為“數(shù)學成績優(yōu)秀與教學改革有關(guān)”;

(2)從乙班,,分數(shù)段中,按分層抽樣隨機抽取7名學生座談,從中選三位同學發(fā)言,記來自發(fā)言的人數(shù)為隨機變量,求的分布列和期望.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,四棱錐中,底面為直角梯形,,,,過點作平面平行于平面,平面與棱,,分別相交于點,,.

(1)求的長度;

(2)求二面角的余弦值.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù)在點處的切線是.

(1)求函數(shù)的極值;

(2)當恒成立時,求實數(shù)的取值范圍(為自然對數(shù)的底數(shù)).

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù),

(Ⅰ)若的圖像在處的切線過點,求的值并討論上的單調(diào)增區(qū)間;

(Ⅱ)定義:若直線與曲線都相切,則我們稱直線為曲線的公切線.若曲線存在公切線,試求實數(shù)的取值范圍.

查看答案和解析>>

同步練習冊答案