【題目】已知橢圓的下頂點(diǎn)為,右頂點(diǎn)為,離心率,拋物線的焦點(diǎn)為是拋物線上一點(diǎn),拋物線在點(diǎn)處的切線為,且.

(1)求直線的方程;

(2)若與橢圓相交于,兩點(diǎn),且,求的方程.

【答案】(Ⅰ);(Ⅱ)

【解析】【試題分析】(1)利用題目所給離心率的值求出直線的斜率,即直線的斜率。利用導(dǎo)數(shù)求得切點(diǎn)坐標(biāo)并求出切線方程.(2)聯(lián)立直線方程和橢圓方程,寫(xiě)出韋達(dá)定理,利用三角形的面積列方程求得的值,進(jìn)而求得橢圓的方程.

【試題解析】

(Ⅰ)因?yàn)?/span>, 所以所以

又因?yàn)?/span>, 所以的斜率為

設(shè),過(guò)點(diǎn)相切的直線,由,解得

所以所以直線的方程為

(Ⅱ)設(shè),由

,,

,即,

所以

【法一】中,令軸于,

又拋物線焦點(diǎn),所以

所以,解得

所以橢圓的方程

【法二】

,拋物線焦點(diǎn),則

所以,解得,

所以橢圓的方程

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是某市31日至14日的空氣質(zhì)量指數(shù)趨勢(shì)圖.空氣質(zhì)量指數(shù)小于100表示空氣質(zhì)量?jī)?yōu)良,空氣質(zhì)量指數(shù)大于200表示空氣重度污染.某人隨機(jī)選擇31日至313日中的某一天到達(dá)該市,并停留2天.

Ⅰ)求31日到14日空氣質(zhì)量指數(shù)的中位數(shù);

Ⅱ)求此人到達(dá)當(dāng)日空氣重度污染的概率;

Ⅲ)由圖判斷從哪天開(kāi)始連續(xù)三天的空氣質(zhì)量指數(shù)方差最大?(結(jié)論不要求證明)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了解戶籍性別對(duì)生育二胎選擇傾向的影響,某地從育齡人群中隨機(jī)抽取了容量為100的調(diào)查樣本,其中城鎮(zhèn)戶籍與農(nóng)民戶籍各50人;男性60人,女性40人,繪制不同群體中傾向選擇生育二胎與傾向選擇不生育二胎的人數(shù)比例圖(如圖所示),其中陰影部分表示傾向選擇生育二胎的對(duì)應(yīng)比例,則下列敘述中錯(cuò)誤的是( )

A. 是否傾向選擇生育二胎與戶籍有關(guān)

B. 是否傾向選擇生育二胎與性別無(wú)關(guān)

C. 傾向選擇生育二胎的人員中,男性人數(shù)與女性人數(shù)相同

D. 傾向選擇生育二的人員中,農(nóng)村戶籍人數(shù)少于城鎮(zhèn)戶籍人數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校高一200名學(xué)生的期中考試語(yǔ)文成績(jī)服從正態(tài)分布,數(shù)學(xué)成績(jī)的頻數(shù)分布直方圖如下

(1)計(jì)算這次考試的數(shù)學(xué)平均分,并比較語(yǔ)文和數(shù)學(xué)哪科的平均分較高(假設(shè)數(shù)學(xué)成績(jī)?cè)陬l率分布直方圖中各段是均勻分布的);

(2)如果成績(jī)大于85分的學(xué)生為優(yōu)秀,這200名學(xué)生中本次考試語(yǔ)文、數(shù)學(xué)優(yōu)秀的人數(shù)大約各多少人?

(3)如果語(yǔ)文和數(shù)學(xué)兩科都優(yōu)秀的共有4人,從(2)中的這些同學(xué)中隨機(jī)抽取3人,設(shè)三人中兩科都優(yōu)秀的有,的分布列和數(shù)學(xué)期望.

(附參考公式)若,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)在點(diǎn)處的切線是.

(1)求函數(shù)的極值;

(2)當(dāng)恒成立時(shí),求實(shí)數(shù)的取值范圍(為自然對(duì)數(shù)的底數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) .

(1)求函數(shù)的單調(diào)遞增區(qū)間;

(2)討論函數(shù)零點(diǎn)的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),.(為自然對(duì)數(shù)的底數(shù))

(1)設(shè)

①若函數(shù)處的切線過(guò)點(diǎn),求的值;

②當(dāng)時(shí),若函數(shù)上沒(méi)有零點(diǎn),求的取值范圍.

(2)設(shè)函數(shù),且,求證:當(dāng)時(shí),.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】平面直角坐標(biāo)系中,已知橢圓)的左焦點(diǎn)為,離心率為,過(guò)點(diǎn)且垂直于長(zhǎng)軸的弦長(zhǎng)為

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)設(shè)點(diǎn)分別是橢圓的左、右頂點(diǎn),若過(guò)點(diǎn)的直線與橢圓相交于不同兩點(diǎn)

①求證:;

②求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),.

函數(shù)的圖象與的圖象無(wú)公共點(diǎn),求實(shí)數(shù)的取值范圍;

是否存在實(shí)數(shù),使得對(duì)任意的,都有函數(shù)的圖象在的圖象的下方?若存在,請(qǐng)求出整數(shù)的最大值;若不存在,請(qǐng)說(shuō)理由.

(參考數(shù)據(jù):,,).

查看答案和解析>>

同步練習(xí)冊(cè)答案