【題目】邊長(zhǎng)為2的正三角形ABC中,點(diǎn)D,E,G分別是邊AB,AC,BC的中點(diǎn),連接DE,連接AGDE于點(diǎn)現(xiàn)將沿DE折疊至的位置,使得平面平面BCED,連接A1G,EG.

證明:DE∥平面A1BC

求點(diǎn)B到平面A1EG的距離.

【答案】(1)見解析;(2)

【解析】

(1)推導(dǎo)出DEBC,由此能證明DE∥平面A1BC

(2)以F為原點(diǎn),FGx軸,FEy軸,FA1z軸,建立空間直角坐標(biāo)系,利用向量法能求出點(diǎn)B到平面A1EG的距離.

邊長(zhǎng)為2的正三角形ABC中,點(diǎn)D,EG分別是邊AB,AC,BC的中點(diǎn),

連接DE,連接AG交DE于點(diǎn)F.

,

平面,平面

平面

沿DE折疊至的位置,使得平面平面BCED,連接,EG.

以F為原點(diǎn),F(xiàn)G為x軸,F(xiàn)E為y軸,為z軸,建立空間直角坐標(biāo)系,

1,0,,0,,

,,

設(shè)平面的法向量y,

,取,得,

點(diǎn)B到平面的距離

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,分別為橢圓的左、右焦點(diǎn).動(dòng)直線過點(diǎn),且與橢圓相交于兩點(diǎn)(直線軸不重合).

(1)若點(diǎn)的坐標(biāo)為,求點(diǎn)坐標(biāo);

(2)點(diǎn),設(shè)直線,的斜率分別為,,求證:;

(3)求面積最大時(shí)的直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱柱ABC—A1B1C1中,側(cè)棱與底面垂直,∠BAC90°,ABAC=AA12,點(diǎn)M,N分別為A1B和B1C1的中點(diǎn).

(1)求異面直線A1B與NC所成角的余弦值;

(2)求A1B與平面NMC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】邊長(zhǎng)為2的正三角形ABC中,點(diǎn)D,E,G分別是邊AB,AC,BC的中點(diǎn),連接DE,連接AGDE于點(diǎn)現(xiàn)將沿DE折疊至的位置,使得平面平面BCED,連接A1G,EG.

證明:DE∥平面A1BC

求點(diǎn)B到平面A1EG的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)對(duì)一切實(shí)數(shù),都有成立,且,,.

1)求的解析式;

2)記函數(shù)上的最大值為,最小值為,若,當(dāng)時(shí),求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)

1)若是偶函數(shù),求的值;

2)若存在,使得成立,求實(shí)數(shù)的取值范圍;

3)設(shè)函數(shù),若有零點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知四棱錐的底面是梯形,,,,在棱上且.

(1)證明:平面;

(2)若平面,異面直線所成角的余弦值為,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校從參加高一年級(jí)期末考試的學(xué)生中抽出60名學(xué)生,將其數(shù)學(xué)成績(jī)(均為整數(shù))分成六段 后,畫出如下部分頻率分布直方圖.觀察圖形的信息,回答下列問題:

(1)求第四小組的頻率,補(bǔ)全頻率分布直方圖,并估計(jì)該校學(xué)生的數(shù)學(xué)成績(jī)的中位數(shù).

(2)從被抽取的數(shù)學(xué)成績(jī)是分以上(包括分)的學(xué)生中選兩人,求他們?cè)谕环謹(jǐn)?shù)段的概率.

(3)假設(shè)從全市參加高一年級(jí)期末考試的學(xué)生中,任意抽取個(gè)學(xué)生,設(shè)這四個(gè)學(xué)生中數(shù)學(xué)成績(jī)?yōu)?0分以上(包括分)的人數(shù)為(以該校學(xué)生的成績(jī)的頻率估計(jì)概率),求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2018年秋季,我省高一年級(jí)全面實(shí)行新高考政策,為了調(diào)查學(xué)生對(duì)新政策的了解情況,準(zhǔn)備從某校高一三個(gè)班級(jí)抽取10名學(xué)生參加調(diào)查.已知三個(gè)班級(jí)學(xué)生人數(shù)分別為40人,30人,30人.考慮使用簡(jiǎn)單隨機(jī)抽樣、分層抽樣和系統(tǒng)抽樣三種方案,使用簡(jiǎn)單隨機(jī)抽樣和分層抽樣時(shí),將學(xué)生按三個(gè)班級(jí)依次統(tǒng)一編號(hào)為1,2,…,100;使用系統(tǒng)抽樣,將學(xué)生統(tǒng)一編號(hào)為1,2,…,100,并將整個(gè)編號(hào)依次分為10段.如果抽得的號(hào)碼有下列四種情況:

①7,17,27,37,47,57,67,77,87,97;②3,9,15,33,43,53,65,75,85,95;

③9,19,29,39,49,59,69,79,89,99,;④2,12,22,32,42,52,62,73,83,96.

關(guān)于上述樣本的下列結(jié)論中,正確的是( )

A. ①③都可能為分層抽樣 B. ②④都不能為分層抽樣

C. ①④都可能為系統(tǒng)抽樣 D. ②③都不能為系統(tǒng)抽樣

查看答案和解析>>

同步練習(xí)冊(cè)答案