【題目】2018年秋季,我省高一年級(jí)全面實(shí)行新高考政策,為了調(diào)查學(xué)生對(duì)新政策的了解情況,準(zhǔn)備從某校高一三個(gè)班級(jí)抽取10名學(xué)生參加調(diào)查.已知三個(gè)班級(jí)學(xué)生人數(shù)分別為40人,30人,30人.考慮使用簡(jiǎn)單隨機(jī)抽樣、分層抽樣和系統(tǒng)抽樣三種方案,使用簡(jiǎn)單隨機(jī)抽樣和分層抽樣時(shí),將學(xué)生按三個(gè)班級(jí)依次統(tǒng)一編號(hào)為1,2,…,100;使用系統(tǒng)抽樣,將學(xué)生統(tǒng)一編號(hào)為1,2,…,100,并將整個(gè)編號(hào)依次分為10段.如果抽得的號(hào)碼有下列四種情況:

①7,17,27,37,47,57,67,77,87,97;②3,9,15,33,43,53,65,75,85,95;

③9,19,29,39,49,59,69,79,89,99,;④2,12,22,32,42,52,62,73,83,96.

關(guān)于上述樣本的下列結(jié)論中,正確的是( )

A. ①③都可能為分層抽樣 B. ②④都不能為分層抽樣

C. ①④都可能為系統(tǒng)抽樣 D. ②③都不能為系統(tǒng)抽樣

【答案】A

【解析】

根據(jù)題意,結(jié)合三種抽樣方法得到數(shù)據(jù)的特點(diǎn)是:系統(tǒng)抽樣方法得到的數(shù)據(jù)每個(gè)數(shù)據(jù)與前一個(gè)數(shù)據(jù)的差都是10,分層抽樣方法得到的數(shù)據(jù)在1--40之間的有4個(gè),41—70之間的有3個(gè),71—100之間的有3個(gè);依次分析四組數(shù)據(jù),即可得出結(jié)果.

對(duì)于①,既滿足系統(tǒng)抽樣的數(shù)據(jù)特征,又滿足分層抽樣的數(shù)據(jù)特征,所以可能是分層抽樣或系統(tǒng)抽樣;

對(duì)于②,只滿足分層抽樣的數(shù)據(jù)特征,所以可能是分層抽樣;

對(duì)于③,既滿足系統(tǒng)抽樣的數(shù)據(jù)特征,又滿足分層抽樣的數(shù)據(jù)特征,所以可能是分層抽樣或系統(tǒng)抽樣;

對(duì)于④,只滿足分層抽樣的數(shù)據(jù)特征,所以可能是分層抽樣;

故選A.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】邊長(zhǎng)為2的正三角形ABC中,點(diǎn)D,E,G分別是邊AB,AC,BC的中點(diǎn),連接DE,連接AGDE于點(diǎn)現(xiàn)將沿DE折疊至的位置,使得平面平面BCED,連接A1G,EG.

證明:DE∥平面A1BC

求點(diǎn)B到平面A1EG的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義在上的函數(shù)滿足,,且當(dāng)時(shí),,則方程上所有根的和為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某小區(qū)中央廣場(chǎng)由兩部分組成,一部分是邊長(zhǎng)為的正方形,另一部分是以為直徑的半圓,其圓心為.規(guī)劃修建的條直道, 將廣場(chǎng)分割為個(gè)區(qū)域:Ⅰ、Ⅲ、Ⅴ為綠化區(qū)域(圖中陰影部分),Ⅱ、Ⅳ、Ⅵ為休閑區(qū)域,其中點(diǎn)在半圓弧上, 分別與 相交于點(diǎn), .(道路寬度忽略不計(jì))

(1)若經(jīng)過圓心,求點(diǎn)的距離;

(2)設(shè), .

①試用表示的長(zhǎng)度;

②當(dāng)為何值時(shí),綠化區(qū)域面積之和最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若數(shù)列同時(shí)滿足:①對(duì)于任意的正整數(shù), 恒成立;②對(duì)于給定的正整數(shù), 對(duì)于任意的正整數(shù)恒成立,則稱數(shù)列是“數(shù)列”.

(1)已知判斷數(shù)列是否為“數(shù)列”,并說(shuō)明理由;

(2)已知數(shù)列是“數(shù)列”,且存在整數(shù),使得, , 成等差數(shù)列,證明: 是等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)數(shù)列的前項(xiàng)和為, , ().

(1)求數(shù)列的通項(xiàng)公式;

(2)設(shè),求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知等差數(shù)列滿足點(diǎn)在直線上.

1)求數(shù)列的通項(xiàng)公式;

(2),求數(shù)列的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),若方程有一個(gè)根,則實(shí)數(shù)m的取值范圍是

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)為研究學(xué)生的身體素質(zhì)與與課外體育鍛煉時(shí)間的關(guān)系,對(duì)該校200名高三學(xué)生的課外體育鍛煉平均每天運(yùn)動(dòng)的時(shí)間進(jìn)行調(diào)查,如下表:(平均每天鍛煉的時(shí)間單位:分鐘)

將學(xué)生日均課外體育運(yùn)動(dòng)時(shí)間在上的學(xué)生評(píng)價(jià)為“課外體育達(dá)標(biāo)”.

平均每天鍛煉的時(shí)間(分鐘)

總?cè)藬?shù)

20

36

44

50

40

10

請(qǐng)根據(jù)上述表格中的統(tǒng)計(jì)數(shù)據(jù)填寫下面列聯(lián)表,并通過計(jì)算判斷是否能在犯錯(cuò)誤的概率不超過的前提下認(rèn)為“課外體育達(dá)標(biāo)”與性別有關(guān)?

課外體育不達(dá)標(biāo)

課外體育達(dá)標(biāo)

合計(jì)

20

110

合計(jì)

從上述200名學(xué)生中,按“課外體育達(dá)標(biāo)”、“課外體育不達(dá)標(biāo)”分層抽樣,抽取4人得到一個(gè)樣本,再?gòu)倪@個(gè)樣本中抽取2人,求恰好抽到一名“課外體育不達(dá)標(biāo)”學(xué)生的概率.

參考公式:,其中.

參考數(shù)據(jù):

查看答案和解析>>

同步練習(xí)冊(cè)答案