【題目】設(shè)函數(shù).
(1)若是偶函數(shù),求的值;
(2)若存在,使得成立,求實數(shù)的取值范圍;
(3)設(shè)函數(shù),若在有零點,求實數(shù)的取值范圍.
【答案】(1);(2);(3).
【解析】
(1)由偶函數(shù)的定義,作差變形后可求出實數(shù)的值;
(2)由已知代入可得,不等式兩邊同時除以可得出,換元,可得出,利用二次函數(shù)的單調(diào)性求出函數(shù)在區(qū)間上的最大值,即可得出實數(shù)的取值范圍;
(3)求出,換元,由此可得出函數(shù)在上有零點,利用參變量分離法得出,利用單調(diào)性求出函數(shù)在區(qū)間上的值域,即可得出實數(shù)的取值范圍.
(1)若是偶函數(shù),則,即
即,則,即;
(2),即,即,
則,設(shè),,.
設(shè),則,
則函數(shù)在區(qū)間上為增函數(shù),
當(dāng)時,函數(shù)取得最大值,.
因此,實數(shù)的取值范圍是;
(3),則,
則,
設(shè),當(dāng)時,函數(shù)為增函數(shù),則,
若在有零點,即在上有解,即,即,
函數(shù)在上單調(diào)遞增,則,即.,因此,實數(shù)的取值范圍是.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖四棱錐中, 是梯形,AB∥CD, ,AB=PD=4,CD=2, ,M為CD的中點,N為PB上一點,且.
(1)若MN∥平面PAD;
(2)若直線AN與平面PBC所成角的正弦值為,求異面直線AD與直線CN所成角的余弦值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)在處取得極小值.
(1)求實數(shù)的值;
(2)設(shè),其導(dǎo)函數(shù)為,若的圖象交軸于兩點且,設(shè)線段的中點為,試問是否為的根?說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中為常數(shù).
(1)若,求函數(shù)的極值;
(2)若函數(shù)在上單調(diào)遞增,求實數(shù)的取值范圍;
(3)若,設(shè)函數(shù)在上的極值點為,求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】邊長為2的正三角形ABC中,點D,E,G分別是邊AB,AC,BC的中點,連接DE,連接AG交DE于點現(xiàn)將沿DE折疊至的位置,使得平面平面BCED,連接A1G,EG.
證明:DE∥平面A1BC
求點B到平面A1EG的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】【選修4-4:坐標(biāo)系與參數(shù)方程】
極坐標(biāo)系的極點為直角坐標(biāo)系的原點,極軸為軸的正半軸,兩神坐標(biāo)系中的長度單位相同.已知曲線的極坐標(biāo)方程為, .
(Ⅰ)求曲線的直角坐標(biāo)方程;
(Ⅱ)在曲線上求一點,使它到直線: (為參數(shù))的距離最短,寫出點的直角坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知命題p:函數(shù)f(x)=x2-2mx+4在[2,+∞)上單調(diào)遞增,命題q:關(guān)于x的不等式mx2+4(m-2)x+4>0的解集為R.若p∨q為真命題,p∧q為假命題,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列的前項和為, , ().
(1)求數(shù)列的通項公式;
(2)設(shè),求數(shù)列的前項和.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com