函數(shù)y=-x2+1,-1≤x<2的值域是(  )
A、(-3,0]
B、[0,1]
C、(-3,1]
D、[1,5)
考點(diǎn):二次函數(shù)的性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:由x的取值范圍逐步求出-x2+1的取值范圍,問題得解.
解答: 解:∵-1≤x<2,
∴0≤x2<4,
∴-4<-x2≤0,
∴-3<-x2+1≤1,
故選:C.
點(diǎn)評(píng):本題考察了求函數(shù)的值域問題,可通過計(jì)算逐步推出,也可畫出草圖一目了然,本題是一道基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC中一點(diǎn)P滿足:
BP
=
1
3
BA
+
1
2
BC
,在△ABC中任取一點(diǎn)Q,則△QBC的面積小于△PBC的面積的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)變量x,y滿足約束條件
x-y≥0
x+y≤1
x+2y≥1
,若8x•(
1
2
m-y的最大值為16,則常數(shù)m的值為(  )
A、-1B、1C、0D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

四邊形OABC中,
CB
=
1
2
OA
,若
OA
=
a
OC
=
b
,則
AB
=( 。
A、
a
-
1
2
b
B、
a
2
-
b
C、
b
+
a
2
D、
b
-
1
2
a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等比數(shù)列{an}的公比q>0,且a5a7=4a42,a2=1,則a1=( 。
A、
1
2
B、
2
2
C、
2
D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知命題p:隨機(jī)變量x~N(2,σ2),且p(x>3)=0.3010,則p(1≤x<2)=0.1990,命題q:若向量
a
,
b
滿足|
a
|=1,|
b
|=3,
a
b
夾角為
π
3
,則|
a
+
b
|=
7
.下面結(jié)論正確的是(  )
A、(¬p)∨q是真命題
B、p∨q是假命題
C、p∧q是真命題
D、p∧(¬q)是真命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖是一個(gè)算法流程圖,則輸出S的值是( 。
A、31B、32C、63D、64

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出以下四個(gè)命題:
①命題“?x<0,x2-x>0”的否定是“?x≥0,x2-x≤0”
②若實(shí)數(shù)x、y∈[0,1],則滿足y>
x
的概率是
2
3

③若隨機(jī)變量ξ服從正態(tài)分布N(2,ξ2)且P(ξ<4)=0.8,則P(0<ξ<2)=0.3
④若a>b≥2,則b2>3b-a
其中真命題有( 。
A、1個(gè)B、2個(gè)C、3個(gè)D、4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

二次函數(shù)y=f(x)的圖象的一部分如圖所示
(1)根據(jù)圖象寫出f(x)在區(qū)間[-1,4]上的值域;
(2)根據(jù)圖象求y=f(x)的解析式;
(3)當(dāng)k∈R時(shí),試探討關(guān)于x的方程f(x)-k=0在(-1,4]上的解的個(gè)數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案