設橢圓
和雙曲線
的公共焦點為
,
是兩曲線的一個交點,則
=
.
試題分析:由題意可知
,則解方程組
與
,聯(lián)立方程組得到
故可知
為直角,故答案為
。
點評:本題考查圓錐曲線的性質(zhì)和應用,解題時要注意公式的靈活運用,屬基礎題
練習冊系列答案
相關(guān)習題
科目:高中數(shù)學
來源:不詳
題型:解答題
設橢圓
的左、右焦點分別為
,上頂點為
,離心率為
, 在
軸負半軸上有一點
,且
(1)若過
三點的圓 恰好與直線
相切,求橢圓C的方程;
(2)在(1)的條件下,過右焦點
作斜率為
的直線
與橢圓C交于
兩點,在
軸上是否存在點
,使得以
為鄰邊的平行四邊形是菱形,如果存在,求出
的取值范圍;如果不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
設
,
分別是橢圓E:
+
=1(0﹤b﹤1)的左、右焦點,過
的直線
與E相交于A、B兩點,且
,
,
成等差數(shù)列。
(Ⅰ)求
;
(Ⅱ)若直線
的斜率為1,求b的值。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
設橢圓的兩個焦點分別為
,過
作橢圓長軸的垂線交橢圓于點
,
若
為等腰直角三角形,則橢圓的離心率是( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
拋物線
的準線方程為
,則實數(shù)
( )
A.4 | B. | C.2 | D. |
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
若拋物線C1:
(p >0)的焦點F恰好是雙曲線C2:
(a>0,b >0)的右焦點,且它們的交點的連線過點F,則雙曲線的離心率為
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
已知對稱中心為原點的雙曲線
與橢圓有公共的焦點,且它們的離心率互為倒數(shù),則該橢圓的標準方程為___________________。
查看答案和解析>>