【題目】謝爾賓斯基三角形(Sierpinskitriangle)是一種分形幾何圖形,由波蘭數(shù)學家謝爾賓斯基在1915年提出,它是一個自相似的例子,其構(gòu)造方法是:

1)取一個實心的等邊三角形(圖1);

2)沿三邊中點的連線,將它分成四個小三角形;

3)挖去中間的那一個小三角形(圖2);

4)對其余三個小三角形重復(1)(2)(3)(4)(圖3.

制作出來的圖形如圖4,圖5,….

若圖3(陰影部分)的面積為1,則圖5(陰影部分)的面積為(

A.B.C.D.

【答案】A

【解析】

先求出圖1,2,3的陰影部分面積,根據(jù)合情推理歸納規(guī)律可知,面積構(gòu)成等比數(shù)列,即可求解.

設(shè)圖1的面積為,圖2被挖去的面積占圖1面積的,則圖2陰影部分的面積為,

同理圖3被挖去的面積占圖2面積的

所以圖3陰影部分的面積為,

按此規(guī)律圖1、圖2、圖3…的面積組成等比數(shù)列:,公比為.

若圖3陰影部分的面積為1,則圖5陰影部分的面積為,

故選:A.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】某市2013年發(fā)放汽車牌照12萬張,其中燃油型汽車牌照10萬張,電動型汽車2萬張,為了節(jié)能減排和控制總量,從2013年開始,每年電動型汽車牌照按50%增長,而燃油型汽車牌照每一年比上一年減少05萬張,同時規(guī)定一旦某年發(fā)放的牌照超過15萬張,以后每一年發(fā)放的電動車的牌照的數(shù)量維持在這一年的水平不變.

1)記2013年為第一年,每年發(fā)放的燃油型汽車牌照數(shù)量構(gòu)成數(shù)列,每年發(fā)放電動型汽車牌照數(shù)為構(gòu)成數(shù)列,完成下列表格,并寫出這兩個數(shù)列的通項公式;

2)從2013年算起,累計各年發(fā)放的牌照數(shù),哪一年開始超過200萬張?











查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐的底面是直角梯形,,,側(cè)面底面,是等邊三角形,,點分別是棱的中點 .

(Ⅰ)求證:平面;

(Ⅱ)求二面角的大小;

(Ⅲ)在線段上存在一點,使平面,且,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),.

(1)當時,求曲線在點處的切線方程;

(2)討論的單調(diào)性;

(3)若有兩個零點,求的取值范圍(只需直接寫出結(jié)果).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了解學生自主學習期間完成數(shù)學套卷的情況,一名教師對某班級的所有學生進行了調(diào)查,調(diào)查結(jié)果如下表.

1)從這班學生中任選一名男生,一名女生,求這兩名學生完成套卷數(shù)之和為4的概率?

2)若從完成套卷數(shù)不少于4套的學生中任選4人,設(shè)選到的男學生人數(shù)為,求隨機變量的分布列和數(shù)學期望;

3)試判斷男學生完成套卷數(shù)的方差與女學生完成套卷數(shù)的方差的大。ㄖ恍鑼懗鼋Y(jié)論).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

1)若,求函數(shù)的極值;

2)設(shè)函數(shù),求函數(shù)的單調(diào)區(qū)間;

3)若在上存在,使得成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】[選修4—4:坐標系與參數(shù)方程]

在直角坐標系中,曲線的方程為.以坐標原點為極點,軸正半軸為極軸建立極坐標系,曲線的極坐標方程為

1)求的直角坐標方程;

2)若有且僅有三個公共點,求的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在位于城市A南偏西相距100海里的B處,一股臺風沿著正東方向襲來,風速為120海里/小時,臺風影響的半徑為海里

1)若,求臺風影響城市A持續(xù)的時間(精確到1分鐘)?

2)若臺風影響城市A持續(xù)的時間不超過1小時,求的取值范圍

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1)討論的單調(diào)性;

(2)若,求a的取值范圍.

查看答案和解析>>

同步練習冊答案