4.已知函數(shù)f(x)對任意的x∈R都滿足f(x)+f(-x)=0,當x≥0時,f(x)=$\left\{\begin{array}{l}{-x,0≤x≤a}\\{-a,a<x<2a}\\{x-3a,x≥2a}\end{array}\right.$,(a>0),若對?x∈R,都有f(x-2)≤f(x),則實數(shù)a的取值范圍為( 。
A.(0,$\frac{1}{4}$)B.[$\frac{1}{4}$,$\frac{1}{3}$]C.(0,$\frac{1}{3}$]D.(0,$\frac{1}{3}$)

分析 函數(shù)f(x)對任意的x∈R都滿足f(x)+f(-x)=0,可得函數(shù)f(x)是奇函數(shù).利用奇函數(shù)的對稱性畫出圖象.及其對?x∈R,都有f(x-2)≤f(x),即可得出.

解答 解:函數(shù)f(x)對任意的x∈R都滿足f(x)+f(-x)=0,即f(-x)=-f(x),因此函數(shù)f(x)是奇函數(shù).
當x≥0時,f(x)=$\left\{\begin{array}{l}{-x,0≤x≤a}\\{-a,a<x<2a}\\{x-3a,x≥2a}\end{array}\right.$,(a>0),利用對稱性畫出圖象.
∵對?x∈R,都有f(x-2)≤f(x),
∴將函數(shù)f(x)的圖象向右平移2個單位后的圖象在y=f(x)的圖象的非上方,
∴6a≤2,a>0,
解得$0<a≤\frac{1}{3}$.
則實數(shù)a的取值范圍是$0<a≤\frac{1}{3}$.
故選:C.

點評 本題考查了函數(shù)的奇偶性與單調性,考查了數(shù)形結合思想方法、推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

14.若函數(shù)f(x)=asinx+cosx在區(qū)間$(\frac{π}{6},\frac{π}{4})$上單調遞增,則實數(shù)a的取值范圍是[1,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.根據(jù)流程圖,若函數(shù)g(x)=f(x)-m在R上有且只有兩個零點,則實數(shù)m的取值范圍是(-∞,0)∪(1,4).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知集合A={x|1<x<3},集合B={x|2m<x<1-m}.
(1)當m=-1時,求A∪B,∁R(A∩B);
(2)若A⊆B,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.設函數(shù)f(x)=$\left\{\begin{array}{l}{2^x},x≤1\\{log_2}x,x>1\end{array}$,則f(f(2))=2;滿足不等式f(x)≤4的x的取值范圍是x≤16.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.函數(shù)y=1+logax(a>0,a≠1)的圖象恒過定點A,若點A在直線mx+ny-2=0上,其中mn>0,則$\frac{1}{m}+\frac{3}{n}$的最小
值為(  )
A.2+$\sqrt{3}$B.2-$\sqrt{3}$C.2D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.若$\sqrt{x}+\sqrt{y}≤a\sqrt{x+y}$(x>0,y>0)恒成立,則a的最小值為( 。
A.1B.$\sqrt{2}$C.2D.2$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.已知向量$\overrightarrow{AB}$=(m,2),$\overrightarrow{CD}$=(-2,4),若$\overrightarrow{AB}$⊥$\overrightarrow{CD}$,則m=4,若$\overrightarrow{AB}$∥$\overrightarrow{CD}$,則m=-1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.已知函數(shù)f(x)=$\left\{\begin{array}{l}{lo{g}_{3}x(x>0)}\\{{2}^{-x}+1(x≤0)}\end{array}\right.$,則f(f(1))+f(log2$\frac{1}{3}$)的值是( 。
A.6B.5C.$\frac{7}{2}$D.$\frac{5}{3}$

查看答案和解析>>

同步練習冊答案