15.根據(jù)流程圖,若函數(shù)g(x)=f(x)-m在R上有且只有兩個(gè)零點(diǎn),則實(shí)數(shù)m的取值范圍是(-∞,0)∪(1,4).

分析 分析程序中各變量、各語句的作用,再根據(jù)流程圖所示的順序,可知:該程序的作用是計(jì)算分段函數(shù)f(x)=$\left\{\begin{array}{l}{x+2}&{x≤-1}\\{\stackrel{{x}^{2}}{-x+6}}&{\stackrel{-1<x≤2}{x>2}}\end{array}\right.$的函數(shù)值;函數(shù)g(x)=f(x)-m在R上有且只有兩個(gè)零點(diǎn),則我們可以在同一平面直角坐標(biāo)系中畫出y=f(x)與y=m的圖象進(jìn)行分析.

解答 解:分析程序中各變量、各語句的作用,
再根據(jù)流程圖所示的順序,可知:
該程序的作用是計(jì)算分段函數(shù)f(x)=$\left\{\begin{array}{l}{x+2}&{x≤-1}\\{\stackrel{{x}^{2}}{-x+6}}&{\stackrel{-1<x≤2}{x>2}}\end{array}\right.$的函數(shù)值;
其函數(shù)圖象如圖所示:
又∵函數(shù)g(x)=f(x)-m在R上有且只有兩個(gè)零點(diǎn),
則由圖可得m<0或1<m<4,
故答案為:(-∞,0)∪(1,4).

點(diǎn)評 本題考查程序框圖以及函數(shù)的零點(diǎn),通過對程序框圖的理解,轉(zhuǎn)化為函數(shù)圖象,然后把函數(shù)零點(diǎn)轉(zhuǎn)化為交點(diǎn)個(gè)數(shù)問題,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知數(shù)列{an}的首項(xiàng)a1=1,且對每個(gè)n∈N*,an,an+1是方程x2+2nx+bn=0的兩根,則b10=189.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知α,β為銳角,cosα=$\frac{1}{7},sin(α+β)=\frac{{5\sqrt{3}}}{14}$,則cosβ=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.若命題?x∈{2,3},x2-4>0,則命題¬p為?x∈{2,3},x2-4≤0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.如圖是某校高二年級舉辦的歌詠比賽上,七位評委為某選手打出的分?jǐn)?shù)的莖葉統(tǒng)計(jì)圖,去掉一個(gè)最高分和一個(gè)最低分后,所剩數(shù)據(jù)的方差為3.2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=log2(1-x),g(x)=log2(1+x),令F(x)=f(x)-g(x).
(1)求F(x)的定義域;
(2)若a,b∈(0,1),猜想F(a)+F(b)與F($\frac{a+b}{1+ab}$)之間的關(guān)系并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.各項(xiàng)均為正數(shù)的等比數(shù)列{an},a1=1,a2a4=16,數(shù)列{bn}的前n項(xiàng)和為Sn,且Sn=$\frac{3{n}^{2}+n}{2}(n∈{N}^{+})$.
(1)求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)若cn=an+(-1)nbn,求數(shù)列{cn}的前n項(xiàng)和Un;
(3)令dn=$\frac{_{n}}{{a}_{n}}$(n∈N+),數(shù)列{dn}的前n項(xiàng)和為Tn,若Tn≥t2+t恒成立,求t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知函數(shù)f(x)對任意的x∈R都滿足f(x)+f(-x)=0,當(dāng)x≥0時(shí),f(x)=$\left\{\begin{array}{l}{-x,0≤x≤a}\\{-a,a<x<2a}\\{x-3a,x≥2a}\end{array}\right.$,(a>0),若對?x∈R,都有f(x-2)≤f(x),則實(shí)數(shù)a的取值范圍為( 。
A.(0,$\frac{1}{4}$)B.[$\frac{1}{4}$,$\frac{1}{3}$]C.(0,$\frac{1}{3}$]D.(0,$\frac{1}{3}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.集合{1,2}的子集個(gè)數(shù)為4.

查看答案和解析>>

同步練習(xí)冊答案