已知圓,若橢圓的右頂點(diǎn)為圓的圓心,離心率為.
(1)求橢圓的方程;
(2)若存在直線,使得直線與橢圓分別交于兩點(diǎn),與圓分別交于兩點(diǎn),點(diǎn)在線段上,且,求圓的半徑的取值范圍.
(1);(2).

試題分析:(1)圓的圓心已知,可求出橢圓方程中的,又橢圓離心率知道根據(jù) 可得,故可求出橢圓方程;(2)設(shè)出兩點(diǎn)坐標(biāo),聯(lián)立橢圓方程,用弦長公式將表示成的函數(shù),再將表示成的函數(shù),根據(jù)和基本不等式求解.
試題解析:(1)設(shè)橢圓的焦距為2c,因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025629886973.png" style="vertical-align:middle;" />
所以橢圓的方程為。
(2)設(shè),
聯(lián)立方程得
所以

又點(diǎn)到直線的距離,則
顯然,若點(diǎn)也在線段上,則由對稱性可知,直線就是y軸,與已知矛盾,所以要使,只要,所以

當(dāng)時(shí),.
當(dāng)時(shí),3,
又顯然,所以
綜上,圓的半徑的取值范圍是.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,F(xiàn)1,F(xiàn)2是離心率為的橢圓C:(a>b>0)的左、右焦點(diǎn),直線:x=-將線段F1F2分成兩段,其長度之比為1:3.設(shè)A,B是C上的兩個(gè)動(dòng)點(diǎn),線段AB的中垂線與C交于P,Q兩點(diǎn),線段AB的中點(diǎn)M在直線l上.

(Ⅰ)求橢圓C的方程;
(Ⅱ)求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知雙曲線的離心率為,右準(zhǔn)線方程為,
(1)求雙曲線C的方程;
(2)已知直線與雙曲線C交于不同的兩點(diǎn)A,B,且線段AB的中點(diǎn)在以雙曲線C的實(shí)軸長為直徑的圓上,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓C的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上,橢圓C上的點(diǎn)到焦點(diǎn)距離的最大值為3,最小值為1.
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)若直線l:與橢圓C相交于A,B兩點(diǎn)(A,B不是左右頂點(diǎn)),且以AB為直徑的圓過橢圓C的右頂點(diǎn)。求證: 直線l過定點(diǎn),并求出該定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

矩形的中心在坐標(biāo)原點(diǎn),邊軸平行,=8,=6.分別是矩形四條邊的中點(diǎn),是線段的四等分點(diǎn),是線段的四等分點(diǎn).設(shè)直線,,的交點(diǎn)依次為.

(1)以為長軸,以為短軸的橢圓Q的方程;
(2)根據(jù)條件可判定點(diǎn)都在(1)中的橢圓Q上,請以點(diǎn)L為例,給出證明(即證明點(diǎn)L在橢圓Q上).
(3)設(shè)線段等分點(diǎn)從左向右依次為,線段等分點(diǎn)從上向下依次為,那么直線與哪條直線的交點(diǎn)一定在橢圓Q上?(寫出結(jié)果即可,此問不要求證明)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線的頂點(diǎn)為原點(diǎn),其焦點(diǎn)到直線的距離為.設(shè)為直線上的點(diǎn),過點(diǎn)作拋物線的兩條切線,其中為切點(diǎn).
(Ⅰ)求拋物線的方程;
(Ⅱ)當(dāng)點(diǎn)為直線上的定點(diǎn)時(shí),求直線的方程;
(Ⅲ)當(dāng)點(diǎn)在直線上移動(dòng)時(shí),求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知定點(diǎn)F(2,0)和定直線,動(dòng)圓P過定點(diǎn)F與定直線相切,記動(dòng)圓圓心P的軌跡為曲線C
(1)求曲線C的方程.
(2)若以M(2,3)為圓心的圓與拋物線交于A、B不同兩點(diǎn),且線段AB是此圓的直徑時(shí),求直線AB的方程

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖已知橢圓的中點(diǎn)在原點(diǎn),焦點(diǎn)在x軸上,長軸是短軸的2倍且過點(diǎn),平行于的直線在y軸的截距為,且交橢圓與兩點(diǎn),

(1)求橢圓的方程;(2)求的取值范圍;(3)求證:直線、與x軸圍成一個(gè)等腰三角形,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

雙曲線的左、右焦點(diǎn)分別為,左、右頂點(diǎn)分別為,過焦點(diǎn)軸垂直的直線和雙曲線的一個(gè)交點(diǎn)為,若的等差中項(xiàng),則該雙曲線的離心率為              .

查看答案和解析>>

同步練習(xí)冊答案