雙曲線
的左、右焦點分別為
和
,左、右頂點分別為
和
,過焦點
與
軸垂直的直線和雙曲線的一個交點為
,若
是
和
的等差中項,則該雙曲線的離心率為
.
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知圓
,若橢圓
的右頂點為圓
的圓心,離心率為
.
(1)求橢圓
的方程;
(2)若存在直線
,使得直線
與橢圓
分別交于
兩點,與圓
分別交于
兩點,點
在線段
上,且
,求圓
的半徑
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知橢圓
的離心率為
,直線
與以原點為圓心、以橢圓
的短半軸長為半徑的圓
相切.
(1)求橢圓
的方程;
(2)設(shè)橢圓
的左焦點為
,右焦點為
,直線
過點
,且垂直于橢圓的長軸,動直線
垂直于
,垂足為點
,線段
的垂直平分線交
于點
,求點
的軌跡
的方程;
(3)設(shè)
與
軸交于點
,不同的兩點
在
上(
與
也不重合),且滿足
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知
為拋物線
的焦點,拋物線上點
滿足
(Ⅰ)求拋物線
的方程;
(Ⅱ)
點的坐標(biāo)為(
,
),過點F作斜率為
的直線與拋物線交于
、
兩點,
、
兩點的橫坐標(biāo)均不為
,連結(jié)
、
并延長交拋物線于
、
兩點,設(shè)直線
的斜率為
,問
是否為定值,若是求出該定值,若不是說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
F
1,F(xiàn)
2是雙曲線
的左、右焦點,過左焦點F
1的直線
與雙曲線C的左、右兩支分別交于A,B兩點,若
,則雙曲線的離心率是( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
雙曲線
的離心率為( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
已知拋物線
的焦點
恰為雙曲線
的右焦點,且兩曲線交點的連線過點
,則雙曲線的離心率為 ( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知定點
,
,動點
到定點
距離與到定點
的距離的比值是
.
(Ⅰ)求動點
的軌跡方程,并說明方程表示的曲線;
(Ⅱ)當(dāng)
時,記動點
的軌跡為曲線
.
①若
是圓
上任意一點,過
作曲線
的切線,切點是
,求
的取值范圍;
②已知
,
是曲線
上不同的兩點,對于定點
,有
.試問無論
,
兩點的位置怎樣,直線
能恒和一個定圓相切嗎?若能,求出這個定圓的方程;若不能,請說明理由.
查看答案和解析>>