【題目】已知定義在 R 上的奇函數(shù) f (x) ,設其導函數(shù)為 f x ,當 x ,0時,恒有xf x f x 0 ,令 F x xf x,則滿足 F(3) F 2x 1 的實數(shù) x 的取值范圍是______.
【答案】
【解析】分析:根據(jù)函數(shù)的奇偶性和條件,判斷函數(shù)F(x)的單調(diào)性,利用函數(shù)的奇偶性和單調(diào)性解不等式即可.
詳解:∵F(x)=xf(x),∴=x+f(x),
即當x∈(﹣∞,0]時,xf x f x 0,函數(shù)F(x)為減函數(shù),
∵f(x)是奇函數(shù),∴F(x)=xf(x)為偶數(shù),且當x>0為增函數(shù).
即不等式F(3)>F(2x﹣1)等價為F(3)>F(|2x﹣1|),
∴|2x﹣1|<3,∴﹣3<2x﹣1<3,
即﹣2<2x<4,∴﹣1<x<2,
即實數(shù)x的取值范圍是(﹣1,2),
故答案為:
科目:高中數(shù)學 來源: 題型:
【題目】某地區(qū)100位居民的人均月用水量(單位:)的分組及各組的頻數(shù)如下:
,4; ,8; ,15;
,22; ,25; ,14;
,6; ,4; ,2.
(1)列出樣本的頻率分布表;
(2)畫出頻率分布直方圖,并根據(jù)直方圖估計這組數(shù)據(jù)的平均數(shù)、中位數(shù)、眾數(shù);
(3)當?shù)卣贫巳司掠盟繛?/span>的標準,若超出標準加倍收費,當?shù)卣f,以上的居民不超過這個標準,這個解釋對嗎?為什么?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了研究高中學生對鄉(xiāng)村音樂的態(tài)度(喜歡和不喜歡兩種態(tài)度)與性別的關系,運用2×2列聯(lián)表進行獨立性檢驗,經(jīng)計算K2=8.01,附表如下:
P(K2≥k0) | 0.100 | 0.050 | 0.025 | 0.010 | 0.001 |
k0 | 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
參照附表,得到的正確的結(jié)論是( 。
A. 有99%以上的把握認為“喜歡鄉(xiāng)村音樂與性別有關”
B. 有99%以上的把握認為“喜歡鄉(xiāng)村音樂與性別無關”
C. 在犯錯誤的概率不超過0.1%的前提下,認為“喜歡鄉(xiāng)村音樂與性別有關”
D. 在犯錯誤的概率不超過0.1%的前提下,認為“喜歡鄉(xiāng)村音樂與性別無關”
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,有兩條相交成60°角的直線,交點為.甲、乙分別在上,起初甲離點,乙離點,后來甲沿的方向,乙沿的方向,同時以的速度步行.求:
(1)起初兩人的距離是多少?
(2)后兩人的距離是多少?
(3)什么時候兩人的距離最短?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】有兩位射擊運動員在一次射擊測試中各射靶7次,每次命中的環(huán)數(shù)如下:
甲 7 8 10 9 8 8 6 乙 9 10 7 8 7 7 8
則下列判斷正確的是( )
A. 甲射擊的平均成績比乙好 B. 甲射擊的成績的眾數(shù)小于乙射擊的成績的眾數(shù)
C. 乙射擊的平均成績比甲好 D. 甲射擊的成績的極差大于乙射擊的成績的極差
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在空間直角坐標系Oxyz中,已知A(2,0,0),B(2,2,0),C(0,2,0),D(1,1, ),若S1 , S2 , S3分別表示三棱錐D﹣ABC在xOy,yOz,zOx坐標平面上的正投影圖形的面積,則( )
A.S1=S2=S3
B.S2=S1且S2≠S3
C.S3=S1且S3≠S2
D.S3=S2且S3≠S1
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】一位數(shù)學老師在黑板上寫了三個向量,,,其中,都是給定的整數(shù).老師問三位學生這三個向量的關系,甲回答:“與平行,且與垂直”,乙回答:“與平行”,丙回答:“與不垂直也不平行”,最后老師發(fā)現(xiàn)只有一位學生判斷正確,由此猜測,的值不可能為( )
A. , B. , C. , D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某大型水果超市每天以元/千克的價格從水果基地購進若干水果,然后以元/千克的價格出售,若有剩余,則將剩下的水果以元/千克的價格退回水果基地,為了確定進貨數(shù)量,該超市記錄了水果最近天的日需求量(單位:千克),整理得下表:
日需求量 | |||||||
頻數(shù) |
以天記錄的各日需求量的頻率代替各日需求量的概率.
(1)求該超市水果日需求量(單位:千克)的分布列;
(2)若該超市一天購進水果千克,記超市當天水果獲得的利潤為(單位:元),求的分布列及其數(shù)學期望.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com