【題目】如圖所示,有兩條相交成60°角的直線,交點為.甲、乙分別在上,起初甲離點,乙離點,后來甲沿的方向,乙沿的方向,同時以的速度步行.求:
(1)起初兩人的距離是多少?
(2)后兩人的距離是多少?
(3)什么時候兩人的距離最短?
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某廠生產(chǎn)某種產(chǎn)品的年固定成本為250萬元,每生產(chǎn)千件,需另投入成本,當(dāng)年產(chǎn)量不足80千件時,(萬元);當(dāng)年產(chǎn)量不小于80千件時,(萬元),每件售價為0.05萬元,通過市場分析,該廠生產(chǎn)的商品能全部售完.
(1)寫出年利潤(萬元)關(guān)于年產(chǎn)量(千件)的函數(shù)解析式;
(2)年產(chǎn)量為多少千件時,該廠在這一商品的生產(chǎn)中所獲利潤最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=(c為常數(shù)),且f(1)=0.
(1)求c的值;
(2)證明函數(shù)f(x)在[0,2]上是單調(diào)遞增函數(shù);
(3)已知函數(shù)g(x)=f(ex),判斷函數(shù)g(x)的奇偶性.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2014福建)在下列向量組中,可以把向量 =(3,2)表示出來的是( )
A.=(0,0), =(1,2)
B.=(﹣1,2), =(5,﹣2)
C.=(3,5), =(6,10)
D.=(2,﹣3), =(﹣2,3)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面四邊形ABCD中,AB=BD=CD=1,AB⊥BD,CD⊥BD,將△ABD沿BD折起,使得平面ABD⊥平面BCD,如圖.
(1)求證:AB⊥CD;
(2)若M為AD中點,求直線AD與平面MBC所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線E: ﹣ =1(a>0,b>0)的兩條漸近線分別為l1:y=2x,l2:y=﹣2x.
(1)求雙曲線E的離心率;
(2)如圖,O為坐標原點,動直線l分別交直線l1 , l2于A,B兩點(A,B分別在第一、第四象限),且△OAB的面積恒為8,試探究:是否存在總與直線l有且只有一個公共點的雙曲線E?若存在,求出雙曲線E的方程,若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義在 R 上的奇函數(shù) f (x) ,設(shè)其導(dǎo)函數(shù)為 f x ,當(dāng) x ,0時,恒有xf x f x 0 ,令 F x xf x,則滿足 F(3) F 2x 1 的實數(shù) x 的取值范圍是______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】李明在10場籃球比賽中的投籃情況統(tǒng)計如下(假設(shè)各場比賽相互獨立);
場次 | 投籃次數(shù) | 命中次數(shù) | 場次 | 投籃次數(shù) | 命中次數(shù) |
主場1 | 22 | 12 | 客場1 | 18 | 8 |
主場2 | 15 | 12 | 客場2 | 13 | 12 |
主場3 | 12 | 8 | 客場3 | 21 | 7 |
主場4 | 23 | 8 | 客場4 | 18 | 15 |
主場5 | 24 | 20 | 客場5 | 25 | 12 |
(1)從上述比賽中隨機選擇一場,求李明在該場比賽中投籃命中率超過0.6的概率;
(2)從上述比賽中隨機選擇一個主場和一個客場,求李明的投籃命中率一場超過0.6,一場不超過0.6的概率;
(3)記 是表中10個命中次數(shù)的平均數(shù),從上述比賽中隨機選擇一場,記X為李明在這場比賽中的命中次數(shù),比較EX與 的大。ㄖ恍鑼懗鼋Y(jié)論).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】執(zhí)行如圖所示的程序框圖,如果輸出S=3,那么判斷框內(nèi)應(yīng)填入的條件是( )
A.k≤6
B.k≤7
C.k≤8
D.k≤9
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com