【題目】某同學(xué)假期社會(huì)實(shí)踐活動(dòng)選定的課題是“節(jié)約用水研究”.為此他購買了電子節(jié)水閥,并記錄了家庭未使用電子節(jié)水閥20天的日用水量數(shù)據(jù)(單位:)和使用了電子節(jié)水閥20天的日用水量數(shù)據(jù),并利用所學(xué)的《統(tǒng)計(jì)學(xué)》知識得到了未使用電子節(jié)水閥20天的日平均用水量為0.48,使用了電子節(jié)水閥20天的日用水量數(shù)據(jù)的頻率分布直方圖如下圖:

1)試估計(jì)該家庭使用電子節(jié)水閥后,日用水量小于0.35的概率;

2)估計(jì)該家庭使用電子節(jié)水閥后,一年能節(jié)省多少水?(一年按365天計(jì)算,同一組中的數(shù)據(jù)以這組數(shù)據(jù)所在區(qū)間中點(diǎn)的值作代表.

【答案】10.482

【解析】

1)計(jì)算日用水量小于0.35時(shí),頻率分布直方圖中長方形面積之和即可;

2)根據(jù)頻率分布直方圖計(jì)算出使用電子節(jié)水閥后日均節(jié)水量的平均值,再求出年節(jié)水量即可.

1)根據(jù)直方圖,該家庭使用電子節(jié)水閥后20天日用水量小于0.35的頻率為

,

因此該家庭使用電子節(jié)水閥后日用水量小于0.35的概率的估計(jì)值為0.48.

2)該家庭使用了電子節(jié)水閥后20天日用水量的平均數(shù)為.

估計(jì)使用電子節(jié)水閥后,一年可節(jié)省水.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于的一元二次方程

1)若是一枚骰子擲兩次所得到的點(diǎn)數(shù),求方程有兩正根的概率.

2)若,求方程沒有實(shí)根的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直三棱柱中,,分別是,的中點(diǎn).

1)求證:平面;

2)求證:平面平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面是正方形,底面,,EF分別是,的中點(diǎn),點(diǎn)O的交點(diǎn).

1)證明:平面;

2)求四棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知某公司生產(chǎn)某款手機(jī)的年固定成本為40萬元,每生產(chǎn)1萬只還需另投入16萬元.設(shè)該公司一年內(nèi)共生產(chǎn)該款手機(jī)萬只并全部銷售完,每萬只的銷售收入為萬元,且

(1)寫出年利潤(萬元)關(guān)于年產(chǎn)量(萬只)的函數(shù)解析式;

(2)當(dāng)年產(chǎn)量為多少萬只時(shí),該公司在該款手機(jī)的生產(chǎn)中所獲得的利潤最大?并求出最大利潤.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在直角梯形中,,,點(diǎn)上,且,將沿折起,使得平面平面(如圖2).中點(diǎn)

(1)求證:;

(2)求四棱錐的體積;

(3)在線段上是否存在點(diǎn),使得平面?若存在,求的值;若不存在,請說明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)均為大于1的整數(shù).證明:存在個(gè)不被整除的整數(shù),若將它們?nèi)我夥殖蓛山M,則總有一組有若干個(gè)數(shù)的和被整除.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱柱中,已知側(cè)面,,,點(diǎn)在棱上.

)求證:平面

)試確定點(diǎn)的位置,使得二面角的余弦值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知拋物線,過拋物線焦點(diǎn)且與軸垂直的直線與拋物線相交于、兩點(diǎn),且的周長為.

(1)求拋物線的方程;

(2)若直線過焦點(diǎn)且與拋物線相交于兩點(diǎn),過點(diǎn)、分別作拋物線的切線,切線相交于點(diǎn),求:的值.

查看答案和解析>>

同步練習(xí)冊答案