【題目】在平面直角坐標系中,已知拋物線,過拋物線焦點且與軸垂直的直線與拋物線相交于、兩點,且的周長為.

(1)求拋物線的方程;

(2)若直線過焦點且與拋物線相交于兩點,過點分別作拋物線的切線、,切線相交于點,求:的值.

【答案】(1);(2)0.

【解析】

1)先求得A,B兩點坐標,利用計算的周長可得p,進而求得拋物線方程;

2)利用導數(shù)的幾何意義求得切線的方程,聯(lián)立直線與拋物線方程,利用韋達定理及的交點P,可得,再利用焦半徑公式求得,可得結(jié)果.

1)由題意知焦點的坐標為,將代入拋物線的方程可求得點、的坐標分別為、

,,可得的周長為,有,得.

故拋物線的方程為.

2)由(1)知拋物線的方程可化為,求導可得.

設點、的坐標分別為、.

設直線的方程為(直線的斜率顯然存在).

聯(lián)立方程消去整理為:,可得.

,.

可得直線的方程為,整理為.

同理直線的方程為.

聯(lián)立方程,解得,則點的坐標為.

由拋物線的幾何性質(zhì)知,,

.

.

.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某同學假期社會實踐活動選定的課題是“節(jié)約用水研究”.為此他購買了電子節(jié)水閥,并記錄了家庭未使用電子節(jié)水閥20天的日用水量數(shù)據(jù)(單位:)和使用了電子節(jié)水閥20天的日用水量數(shù)據(jù),并利用所學的《統(tǒng)計學》知識得到了未使用電子節(jié)水閥20天的日平均用水量為0.48,使用了電子節(jié)水閥20天的日用水量數(shù)據(jù)的頻率分布直方圖如下圖:

1)試估計該家庭使用電子節(jié)水閥后,日用水量小于0.35的概率;

2)估計該家庭使用電子節(jié)水閥后,一年能節(jié)省多少水?(一年按365天計算,同一組中的數(shù)據(jù)以這組數(shù)據(jù)所在區(qū)間中點的值作代表.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在工業(yè)生產(chǎn)中,對一正三角形薄鋼板(厚度不計)進行裁剪可以得到一種梯形鋼板零件,現(xiàn)有一邊長為3(單位:米)的正三角形鋼板(如圖),沿平行于邊的直線剪去,得到所需的梯形鋼材,記這個梯形鋼板的周長為 (單位:米),面積為(單位:平方米).

(1)求梯形的面積關于它的周長的函數(shù)關系式;

(2)若在生產(chǎn)中,梯形的面積與周長之比(即)達到最大值時,零件才能符合使用要求,試確定這個梯形的周長為多時,該零件才可以在生產(chǎn)中使用?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】半期考試后,班長小王統(tǒng)計了50名同學的數(shù)學成績,繪制頻率分布直方圖如圖所示.

根據(jù)頻率分布直方圖,估計這50名同學的數(shù)學平均成績;

用分層抽樣的方法從成績低于115的同學中抽取6名,再在抽取的這6名同學中任選2名,求這兩名同學數(shù)學成績均在中的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一艘輪船在航行中燃料費和它的速度的立方成正比.已知速度為每小時10千米時,燃料費是每小時6,而其他與速度無關的費用是每小時96,問輪船的速度是多少時,航行1千米所需的費用總和最少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,底面為直角梯形,,,平面底面,的中點,是棱上的點,,,

1求證:平面平面;

2,求二面角的大小

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某公司有男性職工64名,一次體檢后,將他們的體重(單位:kg)分組為:,,,,,繪制出頻率分布直方圖如圖,圖中從左到右的前3個小組的頻率之比為.

1)求這64名男職工中,體重小于60kg的人數(shù);

2)從體重在kg范圍的男職工中用分層抽樣的方法選取6名,再從這6名男職工中隨機選取2名,記“至少有一名男職工體重大于65kg”為事件,求事件發(fā)生的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知點在圓柱的底面上,,,,分別為,的直徑,且.若圓柱的體積,,,回答下列問題:

1)求三棱錐的體積.

2)在線段AP上是否存在一點M,使異面直線OM所成的角的余弦值為?若存在,請指出點M的位置,并證明;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在正△ABC,D,E分別在邊AC, AB,AD=AC,AE=AB,BD,CE相交于點F.

)求證:A,E,F,D四點共圓;

)若正△ABC的邊長為2,A,E,F,D所在圓的半徑.

查看答案和解析>>

同步練習冊答案