【題目】三名工人加工同一種零件,他們?cè)谝惶熘械墓ぷ髑闆r如圖所示,其中Ai的橫、縱坐標(biāo)分別為第i名工人上午的工作時(shí)間和加工的零件數(shù),點(diǎn)Bi的橫、縱坐標(biāo)分別為第i名工人下午的工作時(shí)間和加工的零件數(shù),i=1,2,3.
①記Qi為第i名工人在這一天中加工的零件總數(shù),則Q1 , Q2 , Q3中最大的是
②記pi為第i名工人在這一天中平均每小時(shí)加工的零件數(shù),則p1 , p2 , p3中最大的是

【答案】Q1;p2
【解析】解:①若Qi為第i名工人在這一天中加工的零件總數(shù),
Q1=A1的綜坐標(biāo)+B1的綜坐標(biāo);
Q2=A2的綜坐標(biāo)+B2的綜坐標(biāo),
Q3=A3的綜坐標(biāo)+B3的綜坐標(biāo),
由已知中圖象可得:Q1 , Q2 , Q3中最大的是Q1 ,
②若pi為第i名工人在這一天中平均每小時(shí)加工的零件數(shù),
則pi為AiBi中點(diǎn)與原點(diǎn)連線的斜率,
故p1 , p2 , p3中最大的是p2
所以答案是:Q1 , p2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】等比數(shù)列{an}的各項(xiàng)均為正數(shù),且2a1+3a2=1, =9a2a6.

(1)求數(shù)列{an}的通項(xiàng)公式;

(2)設(shè)bn=log3a1+log3a2+…+log3an,求數(shù)列的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知是方程的兩根,數(shù)列是遞增的等差數(shù)列,數(shù)列的前項(xiàng)和為,且.

1)求數(shù)列的通項(xiàng)公式;

2)記,求數(shù)列的前.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)lg(axbx),(a>1>b>0).

(1)f(x)的定義域;

(2)f(x)(1,+∞)上遞增且恒取正值,ab滿足的關(guān)系式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某班主任從本班名男生,名女生中隨機(jī)抽取一個(gè)容量為的樣本,對(duì)他們的數(shù)學(xué)及物理成績(jī)進(jìn)行分析,這名同學(xué)的數(shù)學(xué)及物理成績(jī)(單位:分?jǐn)?shù))對(duì)應(yīng)如下表:

學(xué)生序號(hào)

數(shù)學(xué)成績(jī)

物理成績(jī)

(1)根據(jù)以上數(shù)據(jù),求物理成績(jī)關(guān)于數(shù)學(xué)成績(jī)的線性回歸方程(系數(shù)均精確到),并預(yù)測(cè)班上某位數(shù)學(xué)成績(jī)?yōu)?/span>分的同學(xué)的物理成績(jī)(保留到整數(shù));

(2)從物理成績(jī)不低于分的樣本學(xué)生中隨機(jī)抽取人,求抽到的人數(shù)學(xué)成績(jī)也不低于分的概率.

參考公式:

已經(jīng)計(jì)算出:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)若為奇函數(shù),求的值;

(2)試判斷內(nèi)的單調(diào)性,并用定義證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)的定義域?yàn)镽,且f(2)=2,又函數(shù)f(x)的導(dǎo)函數(shù)y=f′(x)的圖象如圖所示,若兩個(gè)正數(shù)a、b滿足f(2a+b)<2,則 的取值范圍是(
A.( ,2)
B.(﹣∞, )∪(2,+∞)
C.(2,+∞)
D.(﹣∞,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè),函數(shù),是函數(shù)的導(dǎo)函數(shù), 是自然對(duì)數(shù)的底數(shù).

(1)當(dāng)時(shí),求導(dǎo)函數(shù)的最小值;

(2)若不等式對(duì)任意恒成立,求實(shí)數(shù)的最大值;

(3)若函數(shù)存在極大值與極小值,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若存在不為零的常數(shù),使得函數(shù)對(duì)定義域內(nèi)的任一均有,則稱函數(shù)為周期函數(shù),其中常數(shù)就是函數(shù)的一個(gè)周期

(Ⅰ)證明:若存在不為零的常數(shù)使得函數(shù)對(duì)定義域內(nèi)的任一均有,則此函數(shù)是周期函數(shù);

(Ⅱ)若定義在上的奇函數(shù)滿足,試探究此函數(shù)在區(qū)間內(nèi)的零點(diǎn)的最少個(gè)數(shù)

查看答案和解析>>

同步練習(xí)冊(cè)答案