已知函數(shù)f(x)滿足f(x-1)=x,則f(x+1)=
 
考點:函數(shù)解析式的求解及常用方法
專題:計算題,函數(shù)的性質(zhì)及應(yīng)用
分析:由題意知f(x-1)=x=x-1+1,從而求f(x+1)=x+1+1=x+2;從而解得.
解答: 解:∵f(x-1)=x=x-1+1,
∴f(x)=x+1;
∴f(x+1)=x+1+1=x+2;
故答案為:x+2.
點評:本題考查了函數(shù)的解析式的求法,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an},a3=6,a5=10
(1)求等差數(shù)列{an}的通項公式
(2)求數(shù)列{3n-1•an}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)變量x,y滿足約束條件
2x-y-2≤0
x-2y+2≥0
x+y-1≥0
,則s=
y+1
x+1
的取值范圍是             ( 。
A、[
1
2
,2]
B、[
1
2
,1]
C、[1,2]
D、[1,
3
2
]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=x2,則f(2)=( 。
A、0B、2C、4D、7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x2-1,x<1
log
1
2
x,x≥1

(1)在下表中畫出該函數(shù)的圖象;
(2)直接寫出函數(shù)y=f(x)的值域、單調(diào)增區(qū)間及零點.
解:(1)

(2)y=f(x)的值域是
 

y=f(x)的單調(diào)增區(qū)間是
 

y=f(x)的零點是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下面四個命題:
①函數(shù)f(x)=x-sinx(x∈[0,π])的最大值為π,最小值為0;
②函數(shù)y=x3-12x (-3<x<2)的最大值為16,最小值為-16;
③函數(shù)y=x3-12x (-2<x<2)無最大值,也無最小值;
④函數(shù)y=x3-12x在(a,10-a)上有最小值,則a的取值范圍是(-∞,2).  
其中正確的命題有( 。
A、1個B、2個C、3個D、4個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若集合A={x|x2+x-6=0},B={x|mx+1=0},且B⊆A,則m的取值集合為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)x1,x2分別是方程x•2x=1和x•log2x=1的實根,則x1+x2的取值范圍是(  )
A、(1,+∞)
B、[1,+∞)
C、[2,+∞)
D、(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列函數(shù)中,既是偶函數(shù),又是在區(qū)間(0,+∞)上單調(diào)遞減的函數(shù)是( 。
A、y=lnx
B、y=x2
C、y=cosx
D、y=2-|x|

查看答案和解析>>

同步練習(xí)冊答案