【題目】已知橢圓)的上頂點(diǎn)與拋物線)的焦點(diǎn)重合.

(1)設(shè)橢圓和拋物線交于 兩點(diǎn),若,求橢圓的方程;

(2)設(shè)直線與拋物線和橢圓均相切,切點(diǎn)分別為 ,記的面積為,求證: .

【答案】(1) (2)見(jiàn)解析

【解析】試題分析:(1)根據(jù)橢圓幾何性質(zhì)得p,再根據(jù)對(duì)稱性得A坐標(biāo),代人橢圓方程可得a,(2)先根據(jù)導(dǎo)數(shù)幾何意義得拋物線切線方程,再與橢圓方程聯(lián)立,根據(jù)判別式為零確定切點(diǎn),根據(jù)三角形面積公式表示面積,最后根據(jù)基本不等式求最值,證得結(jié)論.

試題解析:(1)易知,則拋物線的方程為

及圖形的對(duì)稱性,不妨設(shè),

代入,得,則.

將之代入橢圓方程得,得

所以橢圓的方程為.

(2)設(shè)切點(diǎn), ,求導(dǎo)得,則切線的斜率為,方程,即

將之與橢圓聯(lián)立得,

令判別式

化簡(jiǎn)整理得, ,此時(shí)

設(shè)直線軸交于點(diǎn),則

由基本不等式得,

,僅當(dāng)時(shí)取等號(hào),但此時(shí),故等號(hào)無(wú)法取得,于是.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知圓,點(diǎn)是圓上任意一點(diǎn),線段的垂直平分線和半徑相交于.

(1)求動(dòng)點(diǎn)的軌跡的方程;

(2)已知是軌跡的三個(gè)動(dòng)點(diǎn),點(diǎn)在一象限, 關(guān)于原點(diǎn)對(duì)稱,且,問(wèn)的面積是否存在最小值?若存在,求出此最小值及相應(yīng)直線的方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】給定點(diǎn),若是直線上位于第一象限內(nèi)的一點(diǎn),直線軸的正半軸相交于點(diǎn).試探究:的面積是否具有最小值?若有,求出點(diǎn)的坐標(biāo);若沒(méi)有,則說(shuō)明理由.若點(diǎn)為直線上的任意一點(diǎn),情況又會(huì)怎樣呢?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】由國(guó)家公安部提出,國(guó)家質(zhì)量監(jiān)督檢驗(yàn)檢疫總局發(fā)布的《車(chē)輛駕駛?cè)藛T血液、呼氣酒精含量閥值與檢驗(yàn)標(biāo)準(zhǔn)()》于日正式實(shí)施.車(chē)輛駕駛?cè)藛T酒飲后或者醉酒后駕車(chē)血液中的酒精含量閥值見(jiàn)表.經(jīng)過(guò)反復(fù)試驗(yàn),一般情況下,某人喝一瓶啤酒后酒精在人體血液中的變化規(guī)律的“散點(diǎn)圖”見(jiàn)圖,

瓶啤酒的情況

且圖表示的函數(shù)模型,則該人喝一瓶啤酒后至少經(jīng)過(guò)多長(zhǎng)時(shí)間才可以駕車(chē)(時(shí)間以整小時(shí)計(jì)算)?(參考數(shù)據(jù):

( 。

駕駛行為類型

閥值

飲酒后駕車(chē)

醉酒后駕車(chē)

車(chē)輛駕車(chē)人員血液酒精含量閥值

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】提升城市道路通行能力,可為市民提供更多出行便利.我校某研究性學(xué)習(xí)小組對(duì)成都市一中心路段(限行速度為千米/小時(shí))的擁堵情況進(jìn)行調(diào)查統(tǒng)計(jì),通過(guò)數(shù)據(jù)分析發(fā)現(xiàn):該路段的車(chē)流速度(/千米)與車(chē)流密度(千米/小時(shí))之間存在如下關(guān)系:如果車(chē)流密度不超過(guò)該路段暢通無(wú)阻(車(chē)流速度為限行速度);當(dāng)車(chē)流密度在時(shí),車(chē)流速度是車(chē)流密度的一次函數(shù);車(chē)流密度一旦達(dá)到該路段交通完全癱瘓(車(chē)流速度為零).

1)求關(guān)于的函數(shù)

2)已知車(chē)流量(單位時(shí)間內(nèi)通過(guò)的車(chē)輛數(shù))等于車(chē)流密度與車(chē)流速度的乘積,求此路段車(chē)流量的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列命題中,假命題是( )

A. , B.

C. 的充要條件是 D. ,的充分不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲同學(xué)寫(xiě)出三個(gè)不等式::,:,然后將的值告訴了乙、丙、丁三位同學(xué),要求他們各用一句話來(lái)描述,以下是甲、乙、丙、丁四位同學(xué)的描述:

乙:為整數(shù);

丙:成立的充分不必要條件;

。成立的必要不充分條件;

甲:三位同學(xué)說(shuō)得都對(duì),則的值為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)(>0)的部分圖象如圖所示,A,B分別是這部分圖象上的最高點(diǎn)、最低點(diǎn),為坐標(biāo)原點(diǎn),若·0,則下列結(jié)論:①函數(shù)是周期為4的奇函數(shù);②函數(shù)是周期為4的偶函數(shù);③函數(shù)的最大值是;④函數(shù)向左平移個(gè)單位后得到的函數(shù)圖象關(guān)于原點(diǎn)對(duì)稱;其中錯(cuò)誤命題的個(gè)數(shù)是(

A.3B.2C.1D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某企業(yè)有甲、乙兩套設(shè)備生產(chǎn)同一種產(chǎn)品,為了檢測(cè)兩套設(shè)備的生產(chǎn)質(zhì)量情況,隨機(jī)從兩套設(shè)備生產(chǎn)的大量產(chǎn)品中各抽取了50件產(chǎn)品作為樣本,檢測(cè)一項(xiàng)質(zhì)量指標(biāo)值,若該項(xiàng)質(zhì)量指標(biāo)值落在內(nèi),則為合格品,否則為不合格品. 表1是甲套設(shè)備的樣本的頻數(shù)分布表,圖1是乙套設(shè)備的樣本的頻率分布直方圖.

表1:甲套設(shè)備的樣本的頻數(shù)分布表

質(zhì)量指標(biāo)值

[95,100)

[100,105)

[105,110)

[110,115)

[115,120)

[120,125]

頻數(shù)

1

4

19

20

5

1

圖1:乙套設(shè)備的樣本的頻率分布直方圖

(1)填寫(xiě)下面列聯(lián)表,并根據(jù)列聯(lián)表判斷是否有90%的把握認(rèn)為該企業(yè)生產(chǎn)的這種產(chǎn)品的質(zhì)量指標(biāo)值與甲、乙兩套設(shè)備的選擇有關(guān);

    1. <sup id="czsep"><rt id="czsep"></rt></sup>

        甲套設(shè)備

        乙套設(shè)備

        合計(jì)

        合格品

        不合格品

        合計(jì)

        ,求的期望.

        附:

        P(K2k0)

        0.15

        0.10

        0.050

        0.025

        0.010

        k0

        2.072

        2.706

        3.841

        5.024

        6.635

        .

        查看答案和解析>>

        同步練習(xí)冊(cè)答案