【題目】已知函數(shù)(>0)的部分圖象如圖所示,A,B分別是這部分圖象上的最高點(diǎn)、最低點(diǎn),為坐標(biāo)原點(diǎn),若·=0,則下列結(jié)論:①函數(shù)是周期為4的奇函數(shù);②函數(shù)是周期為4的偶函數(shù);③函數(shù)的最大值是;④函數(shù)向左平移個(gè)單位后得到的函數(shù)圖象關(guān)于原點(diǎn)對稱;其中錯(cuò)誤命題的個(gè)數(shù)是( )
A.3B.2C.1D.0
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,且過點(diǎn).
(Ⅰ)求橢圓的方程.
(Ⅱ)若, 是橢圓上兩個(gè)不同的動(dòng)點(diǎn),且使的角平分線垂直于軸,試判斷直線的斜率是否為定值?若是,求出該值;若不是,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓()的上頂點(diǎn)與拋物線()的焦點(diǎn)重合.
(1)設(shè)橢圓和拋物線交于, 兩點(diǎn),若,求橢圓的方程;
(2)設(shè)直線與拋物線和橢圓均相切,切點(diǎn)分別為, ,記的面積為,求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線的方程為,拋物線:的焦點(diǎn)為,點(diǎn)是拋物線上到直線距離最小的點(diǎn).
(1)求點(diǎn)的坐標(biāo);
(2)若直線與拋物線交于兩點(diǎn),為中點(diǎn),且,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市為了改善居民的休閑娛樂活動(dòng)場所,現(xiàn)有一塊矩形草坪如下圖所示,已知:米,米,擬在這塊草坪內(nèi)鋪設(shè)三條小路、和,要求點(diǎn)是的中點(diǎn),點(diǎn)在邊上,點(diǎn)在邊時(shí)上,且.
(1)設(shè),試求的周長關(guān)于的函數(shù)解析式,并求出此函數(shù)的定義域;
(2)經(jīng)核算,三條路每米鋪設(shè)費(fèi)用均為元,試問如何設(shè)計(jì)才能使鋪路的總費(fèi)用最低?并求出最低總費(fèi)用.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左右焦點(diǎn)分別為,上頂點(diǎn)為,若直線的斜率為1,且與橢圓的另一個(gè)交點(diǎn)為, 的周長為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過點(diǎn)的直線(直線的斜率不為1)與橢圓交于兩點(diǎn),點(diǎn)在點(diǎn)的上方,若,求直線的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為進(jìn)一步貫徹落實(shí)“十九”大精神,某高校組織了“歌頌祖國,緊跟黨走”為主題的黨史知識競賽,從參加競賽的學(xué)生中,隨機(jī)抽取40名學(xué)生,將其成績分為六段,,,得到如圖所示的頻率分布直方圖.
(1)求圖中的值;
(2)若從競賽成績在與兩個(gè)分?jǐn)?shù)段的學(xué)生中隨機(jī)選取兩名學(xué)生,設(shè)這兩名學(xué)生的競賽成績之差的絕對值不大于分為事件,求事件發(fā)生的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知時(shí),函數(shù)有極值
(1)求實(shí)數(shù)的值;
(2)若方程有3個(gè)實(shí)數(shù)根,求實(shí)數(shù)的取值范圍。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com