已知函數(shù)f(x)=ax-ex(a∈R).
(Ⅰ)求f(x)的單調(diào)區(qū)間;
(Ⅱ)設(shè)g(x)=x2-2x+1,證明:當(dāng)1<a<e時,對任意x1∈(-∞,+∞),總存在x2∈[0,1],使得f(x1)<g(x2)成立.
考點:導(dǎo)數(shù)在最大值、最小值問題中的應(yīng)用,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性
專題:綜合題,導(dǎo)數(shù)的綜合應(yīng)用
分析:(Ⅰ)求導(dǎo)數(shù),分類討論,利用導(dǎo)數(shù)的正負(fù),可求f(x)的單調(diào)區(qū)間;
(Ⅱ)由已知,轉(zhuǎn)化為f(x)max<g(x)max,求最值可證.
解答: 解:(Ⅰ)f'(x)=a-ex
當(dāng)a≤0時,f'(x)<0,所以,f(x)在(-∞,+∞)上單調(diào)遞減,
當(dāng)a>0時,由f'(x)=0,得x=lna.
在區(qū)間(-∞,lna)上,f'(x)>0,在區(qū)間(lna,+∞)上f'(x)<0
所以,函數(shù)f(x)的單調(diào)遞增區(qū)為(-∞,lna),單調(diào)遞減區(qū)間為(lna,+∞)
所以,當(dāng)a≤0時,f(x)在(-∞,+∞)上單調(diào)遞減,
當(dāng)a>0時,函數(shù)f(x)的單調(diào)遞增區(qū)間為(-∞,lna),單調(diào)遞減區(qū)間為(lna,+∞)
(Ⅱ)證明:由已知,轉(zhuǎn)化為f(x)max<g(x)max,由已知可知g(x)max=g(0)=1,
當(dāng)1<a<e時,f(x)在(-∞,lna)上單調(diào)遞增,在(lna,+∞)上單調(diào)遞減,
故f(x)的極大值即為最大值,f(lna)=alna-a,
而1<a<e,故f(lna)=alna-a=a(lna-1)<0,
所以1>alna-a,故命題成立.
點評:本題考查導(dǎo)數(shù)知識的綜合運用,考查函數(shù)的單調(diào)性與最值,考查學(xué)生分析解決問題的能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某幾何體的三視圖如圖所示,則該幾何體的體積為(  )
A、
1
3
B、
1
2
C、1
D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

多面體MN-ABCD的底面ABCD為矩形,其正視圖和側(cè)視圖如圖,其中正視圖為等腰梯形,側(cè)視圖為等腰三角形,則該多面體的體積是( 。
A、
16+
3
3
B、
8+6
3
3
C、
16
3
D、
20
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某校在一次期末數(shù)學(xué)統(tǒng)測中,為統(tǒng)計學(xué)生的考試情況,從學(xué)校的2000名學(xué)生中隨機(jī)抽取50名學(xué)生的考試成績,被測學(xué)生成績?nèi)拷橛?0分到140分之間(滿分150分),將統(tǒng)計結(jié)果按如下方式分成八組:第一組[60,70),第二組[70,80),…,第八組[130,140],如圖是按上述分組方法得到的頻率分布直方圖的一部分. 
(Ⅰ)求第七組的頻率,并完成頻率分布直方圖;
(Ⅱ)估計該校的2000名學(xué)生這次考試成績的平均分(可用中值代替各組數(shù)據(jù)平均值);
(Ⅲ)若從樣本成績屬于第六組和第八組的所有學(xué)生中隨機(jī)抽取兩名,求他們的分差不小于10分的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=|2x+1|+|2x+a|
(1)a=-3時,求不等式f(x)≤6的解集;
(2)若關(guān)于x的不等式f(x)>a恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=lnx-x+a+1
(1)若存在 x∈(0,+∞)使得f(x)≥0成立,求a的范圍;
(2)求證:當(dāng)x>1時,在(1)的條件下,
1
2
x2+ax-a>xlnx+
1
2
成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若關(guān)于x的方程﹙lgx﹚2-2mlgx+(m-
1
4
)=0有兩個大于1的根,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax+xlnx的圖象在點x=e(e為自然對數(shù)的底數(shù))處的切線斜率為3.
(Ⅰ)求實數(shù)a的值;
(Ⅱ)若k∈Z,且f(x)>kx-k對任意x>1恒成立,求k的最大值;
(Ⅲ)若ak=2ln2+3ln3+…+klnk(k≥3,k∈N*),證明:
n
k=3
1
ak
<1(n≥k,n∈N*).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知PE是⊙O的切線,切點為E,PAB,PCD都是⊙O的割線,且PAB經(jīng)過圓心O,過點P直線與直線BC,BD分別交于點M,N,且PE2=PM•PN.
(Ⅰ)求證D,C,M,N四點共圓;
(Ⅱ)求證PB⊥PN.

查看答案和解析>>

同步練習(xí)冊答案