多面體MN-ABCD的底面ABCD為矩形,其正視圖和側(cè)視圖如圖,其中正視圖為等腰梯形,側(cè)視圖為等腰三角形,則該多面體的體積是(  )
A、
16+
3
3
B、
8+6
3
3
C、
16
3
D、
20
3
考點:由三視圖求面積、體積
專題:計算題,空間位置關(guān)系與距離
分析:將多面體補成一個側(cè)棱長為4的直三棱柱,結(jié)合圖形判斷直三棱柱的底面三角形及相關(guān)幾何量的數(shù)據(jù),判斷補的兩個三棱錐的高,把數(shù)據(jù)代入棱柱與棱錐的體積公式計算.
解答: 解:將多面體補成一個側(cè)棱長為4的直三棱柱,如圖,
則直三棱柱的底面三角形如左視圖所示,一條邊長為2.該邊上的高為2,
補的兩個三棱錐的高都是1,
∴幾何體的體積V=
1
2
×2×2×4-2×
1
3
×
1
2
×2×2×1=8-
4
3
=
20
3

故選:D.
點評:本題考查了由三視圖求幾何體的體積,根據(jù)三視圖判斷幾何體的形狀及數(shù)據(jù)所對應(yīng)的幾何量是關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知兩點A(1,0),B(b,0),若拋物線y2=4x上存在點C使△ABC為等邊三角形,則b=( 。
A、5
B、5或-
1
3
C、4
D、4或-2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知定義在R上的函數(shù)f(x)、g(x)滿足
f(x)
g(x)
=ax,且f′(x)g(x)<f(x)g′(x),
f(1)
g(1)
+
f(-1)
g(-1)
=
5
2
,若有窮數(shù)列{
f(n)
g(n)
}(n∈N*)的前n項和為
127
128
,則n=( 。
A、4B、5C、6D、7

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知全集為R,集合A={-1,0,1},B={x|(
1
2
x≤1},則A∩∁RB等于(  )
A、(-∞,0)
B、[0,+∞)
C、{-1}
D、{0,1}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)變量x,y滿足約束條件
y≤x
x+y≤1
y≥-1
,則z=2x-y的最大值為(  )
A、-3
B、
1
2
C、5
D、6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

過點P(4,2)作圓x2+y2=4的兩條切線,切點分別為A、B,O為坐標原點,則△PAB的外接圓方程是( 。
A、(x-2)2+(y-1)2=5
B、(x-4)2+(y-2)2=20
C、(x+2)2+(y+1)2=5
D、(x+4)2+(y+2)2=20

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=1nx+x-
a
x
(a≥-2),g(x)=ex-x
,其中e為自然對數(shù)的底數(shù),且當x>0時f(x)≥3恒成立.
(Ⅰ)求g(x)的單調(diào)區(qū)間;
(Ⅱ)求實數(shù)a的所有可能取值的集合;
(Ⅲ)求證:f(x)+g(x)>4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=ax-ex(a∈R).
(Ⅰ)求f(x)的單調(diào)區(qū)間;
(Ⅱ)設(shè)g(x)=x2-2x+1,證明:當1<a<e時,對任意x1∈(-∞,+∞),總存在x2∈[0,1],使得f(x1)<g(x2)成立.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)在R奇函數(shù),當x≥0時,f(x)=x2-2x.
(1)求函數(shù)f(x)的解析式;
(2)若f(x)在閉區(qū)間[
1
2
,m]最大值為-
3
4
,最小值為-1,求m的取值范圍.

查看答案和解析>>

同步練習冊答案