【題目】在梯形ABCD中,DC∥AB,DC⊥CB,E是AB的中點(diǎn),且AB=2BC=2CD=4(如圖所示),將△ADE沿DE翻折,使AB=2(如圖所示),F是線段AD上一點(diǎn),且AF=2DF.
(Ⅰ)求四棱錐A-BCDE的體積;
(Ⅱ)在線段BE上是否存在一點(diǎn)G,使EF∥平面ACG?若存在,請(qǐng)指出點(diǎn)G的位置,并證明你的結(jié)論;若不存在,請(qǐng)說(shuō)明理由.
【答案】(Ⅰ)(Ⅱ)線段BE上存在一點(diǎn)G,G是BE上靠近點(diǎn)B的三等分點(diǎn),使EF∥平面ACG.
【解析】
(Ⅰ)取BE中點(diǎn)O,連結(jié)AO,證明AO⊥平面BCDE,即可計(jì)算四棱錐A-BCDE的體積。
(Ⅱ)過(guò)F作FH∥DC,交AC于H,在EB上取EG=FH,連結(jié)GH,證明FHEG,即可證明EF∥,問(wèn)題得解。
解:(Ⅰ)∵在梯形ABCD中,DC∥AB,DC⊥CB,E是AB的中點(diǎn),AB=2BC=2CD=4(如圖1所示),
將△ADE沿DE翻折,使AB=2(如圖2所示),
,∴平面ABE⊥
∴平面ABE⊥平面BCDE,四邊形BCDE是以2為邊長(zhǎng)的正方形,
取BE中點(diǎn)O,連結(jié)AO,則AO⊥BE,
∴AO⊥平面BCDE,且AO==,
∴四棱錐A-BCDE的體積V===.
(Ⅱ)過(guò)F作FH∥DC,交AC于H,在EB上取EG=FH,連結(jié)GH,
∵F是線段AD上一點(diǎn),且AF=2DF.
,
∴EG=2GB,即G是BE上靠近點(diǎn)B的三等分點(diǎn),
此時(shí),FHEG,∴四邊形GEFH是平行四邊形,∴EF∥GH,
∵EF平面ACG,GH平面ACG,
∴線段BE上存在一點(diǎn)G,G是BE上靠近點(diǎn)B的三等分點(diǎn),使EF∥平面ACG.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,函數(shù)(是自然對(duì)數(shù)的底數(shù)).
(Ⅰ)若,證明:曲線沒(méi)有經(jīng)過(guò)點(diǎn)的切線;
(Ⅱ)若函數(shù)在其定義域上不單調(diào),求的取值范圍;
(Ⅲ)是否存在正整數(shù),當(dāng)時(shí),函數(shù)的圖象在軸的上方,若存在,求的值;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列的前項(xiàng)和為, ,數(shù)列滿(mǎn)足點(diǎn)在直線上.
(1)求數(shù)列, 的通項(xiàng), ;
(2)令,求數(shù)列的前項(xiàng)和;
(3)若,求對(duì)所有的正整數(shù)都有成立的的范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在中,D,E,F分別是邊,,中點(diǎn),下列說(shuō)法正確的是( )
A.
B.
C.若,則是在的投影向量
D.若點(diǎn)P是線段上的動(dòng)點(diǎn),且滿(mǎn)足,則的最大值為
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】治理大氣污染刻不容緩,根據(jù)我國(guó)分布的《環(huán)境空氣質(zhì)量數(shù)(AQI)技術(shù)規(guī)定》:空氣質(zhì)量指數(shù)劃分階為0~50、51~100、101~150、151~200、201~300和大于300六級(jí),對(duì)應(yīng)于空氣質(zhì)量指數(shù)的六個(gè)級(jí)別,指數(shù)越大,級(jí)別越高,說(shuō)明污染越嚴(yán)重,對(duì)人體健康的影響也越明顯.專(zhuān)家建議:當(dāng)空氣質(zhì)量指數(shù)小于時(shí),可以戶(hù)外運(yùn)動(dòng);空氣質(zhì)量指數(shù)及以上,不適合進(jìn)行旅游等戶(hù)外活動(dòng),以下是某市年月中旬的空氣質(zhì)量指數(shù)情況:
時(shí)間 | 11日 | 12日 | 13日 | 14日 | 15日 | 16日 | 17日 | 18日 | 19日 | 20日 |
AQI | 149 | 143 | 251 | 254 | 138 | 55 | 69 | 102 | 243 | 269 |
(1)求月中旬市民不適合進(jìn)行戶(hù)外活動(dòng)的概率;
(2)一外地游客在月中旬來(lái)該市旅游,想連續(xù)游玩兩天,求適合旅游的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知三角形三邊長(zhǎng)是三個(gè)連續(xù)自然數(shù).
(1)且三角形為鈍角三角形,求三邊長(zhǎng);
(2)且最大角是最小角的倍,求三邊長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)在高二年級(jí)開(kāi)設(shè)大學(xué)先修課程《線性代數(shù)》,共有50名同學(xué)選修,其中男同學(xué)30名,女同學(xué)20名.為了對(duì)這門(mén)課程的教學(xué)效果進(jìn)行評(píng)估,學(xué)校按性別采用分層抽樣的方法抽取5人進(jìn)行考核.
(Ⅰ)求抽取的5人中男、女同學(xué)的人數(shù);
(Ⅱ)考核前,評(píng)估小組打算從抽取的5人中隨機(jī)選出2名同學(xué)進(jìn)行訪談,求選出的兩名同學(xué)中恰有一名女同學(xué)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】中央政府為了應(yīng)對(duì)因人口老齡化而造成的勞動(dòng)力短缺等問(wèn)題,擬定出臺(tái)“延遲退休年齡政策”.為了解人們對(duì)“延遲退休年齡政策”的態(tài)度,責(zé)成人社部進(jìn)行調(diào)研.人社部從網(wǎng)上年齡在15~65歲的人群中隨機(jī)調(diào)查100人,調(diào)查數(shù)據(jù)的頻率分布直方圖和支持“延遲退休”的人數(shù)與年齡的統(tǒng)計(jì)結(jié)果如下:
(1)由以上統(tǒng)計(jì)數(shù)據(jù)填列聯(lián)表,并判斷能否在犯錯(cuò)誤的概率不超過(guò)0.05的前提下認(rèn)為以45歲為分界點(diǎn)的不同人群對(duì)“延遲退休年齡政策”的支持度有差異;
(2)若以45歲為分界點(diǎn),從不支持“延遲退休”的人中按分層抽樣的方法抽取8人參加某項(xiàng)活動(dòng).現(xiàn)從這8人中隨機(jī)抽2人.
①抽到1人是45歲以下時(shí),求抽到的另一人是45歲以上的概率.
②記抽到45歲以上的人數(shù)為,求隨機(jī)變量的分布列及數(shù)學(xué)期望.
參考數(shù)據(jù):
,其中.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com