【題目】治理大氣污染刻不容緩,根據(jù)我國分布的《環(huán)境空氣質(zhì)量數(shù)(AQI)技術(shù)規(guī)定》:空氣質(zhì)量指數(shù)劃分階為0~50、51~100、101~150、151~200、201~300和大于300六級(jí),對(duì)應(yīng)于空氣質(zhì)量指數(shù)的六個(gè)級(jí)別,指數(shù)越大,級(jí)別越高,說明污染越嚴(yán)重,對(duì)人體健康的影響也越明顯.專家建議:當(dāng)空氣質(zhì)量指數(shù)小于時(shí),可以戶外運(yùn)動(dòng);空氣質(zhì)量指數(shù)及以上,不適合進(jìn)行旅游等戶外活動(dòng),以下是某市年月中旬的空氣質(zhì)量指數(shù)情況:
時(shí)間 | 11日 | 12日 | 13日 | 14日 | 15日 | 16日 | 17日 | 18日 | 19日 | 20日 |
AQI | 149 | 143 | 251 | 254 | 138 | 55 | 69 | 102 | 243 | 269 |
(1)求月中旬市民不適合進(jìn)行戶外活動(dòng)的概率;
(2)一外地游客在月中旬來該市旅游,想連續(xù)游玩兩天,求適合旅游的概率.
【答案】(1);(2).
【解析】
試題本題主要考查離散型隨機(jī)變量的概率分布與期望等基礎(chǔ)知識(shí),考查學(xué)生的分析問題解決問題的能力和計(jì)算能力.第一問,分別分析12月中旬市民到戶外的時(shí)間有10種,12月中旬市民不適合進(jìn)行戶外活動(dòng)的時(shí)間有4種,再求概率;第二問,先寫出游客在12月中旬來此城市旅游,想連續(xù)游玩兩天,到此城市的時(shí)間可能有9種,再在這9種中選出符合題意的4種,再求概率.
試題解析:(Ⅰ)12月中旬市民到戶外的時(shí)間可能是日、日、日、日、日、日、日、日、日、日,共種情況;12月中旬市民不適合進(jìn)行戶外活動(dòng)的時(shí)間有日、日、日、日,共種情況.
設(shè)“12月中旬市民不適合進(jìn)行戶外活動(dòng)”為事件,則
所以12月中旬市民不適合進(jìn)行戶外活動(dòng)的概率為
(Ⅱ)該游客在12月中旬來此城市旅游,想連續(xù)游玩兩天,到此城市的時(shí)間可能為:、、、、、、、、,共種情況,連續(xù)兩天都適合旅游的時(shí)間為:、、、,共種情況.
設(shè)“適合旅游的時(shí)間”為事件,則
所以游客在12月中旬來此城市旅游,想連續(xù)游玩兩天,適合旅游的概率為
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓,如圖所示點(diǎn)為橢圓上任意三點(diǎn).
(Ⅰ)若,是否存在實(shí)數(shù),使得代數(shù)式為定值.若存在,求出實(shí)數(shù)和的值;若不存在,說明理由.
(Ⅱ)若,求三角形面積的最大值;
(Ⅲ)滿足(Ⅱ),且在三角形面積取得最大值的前提下,若線段與橢圓長(zhǎng)軸和短軸交于點(diǎn)(不是橢圓的頂點(diǎn)).判斷四邊形的面積是否為定值.若是,求出定值;若不是,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在各棱長(zhǎng)均為2的三棱柱中,側(cè)面底面ABC,.
(1)求側(cè)棱與平面所成角的正弦值的大。
(2)已知點(diǎn)D滿足,在直線上是否存在點(diǎn)P,使DP∥平面?若存在,請(qǐng)確定點(diǎn)P的位置,若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,某自行車手從O點(diǎn)出發(fā),沿折線O﹣A﹣B﹣O勻速騎行,其中點(diǎn)A位于點(diǎn)O南偏東45°且與點(diǎn)O相距20 千米.該車手于上午8點(diǎn)整到達(dá)點(diǎn)A,8點(diǎn)20分騎至點(diǎn)C,其中點(diǎn)C位于點(diǎn)O南偏東(45°﹣α)(其中sinα= ,0°<α<90°)且與點(diǎn)O相距5 千米(假設(shè)所有路面及觀測(cè)點(diǎn)都在同一水平面上).
(1)求該自行車手的騎行速度;
(2)若點(diǎn)O正西方向27.5千米處有個(gè)氣象觀測(cè)站E,假定以點(diǎn)E為中心的3.5千米范圍內(nèi)有長(zhǎng)時(shí)間的持續(xù)強(qiáng)降雨.試問:該自行車手會(huì)不會(huì)進(jìn)入降雨區(qū),并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,AB∥CD,CD=2AB,E為PC的中點(diǎn),且∠PAB=∠PDC=90°.
(Ⅰ)證明:BE∥平面PAD;
(Ⅱ)證明:平面PAB⊥平面PAD.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在梯形ABCD中,DC∥AB,DC⊥CB,E是AB的中點(diǎn),且AB=2BC=2CD=4(如圖所示),將△ADE沿DE翻折,使AB=2(如圖所示),F是線段AD上一點(diǎn),且AF=2DF.
(Ⅰ)求四棱錐A-BCDE的體積;
(Ⅱ)在線段BE上是否存在一點(diǎn)G,使EF∥平面ACG?若存在,請(qǐng)指出點(diǎn)G的位置,并證明你的結(jié)論;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知焦點(diǎn)在x軸上且長(zhǎng)軸長(zhǎng)為4的橢圓C過點(diǎn)T(1,1),記l為圓O:x2+y2=1的切線
(1)求橢圓C的方程;
(2)若l與橢圓C交于A、B兩點(diǎn),求證:∠AOB為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)三棱錐的三視圖是三個(gè)直角三角形,如圖所示,則該三棱錐的外接球的表面積為__________.
[Failed to download image : http://qbm-images.oss-cn-hangzhou.aliyuncs.com/QBM/2018/4/12/1922378615128064/1923439395438592/STEM/3d69fcdc50254164a6fb81896ba4fb1c.png]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知公差不為0的等差數(shù)列的前三項(xiàng)和為6,且成等比數(shù)列.
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè),數(shù)列的前項(xiàng)和為,求使的的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com