20.已知函數(shù)f(x)=$\left\{\begin{array}{l}{|lo{g}_{2}x|,0<x<2}\\{\frac{x+2}{2x},x≥2}\end{array}\right.$,若0<a<b<c,滿足f(a)=f(b)=f(c),則$\frac{ab}{f(c)}$的范圍為(1,2).

分析 作函數(shù)f(x)=$\left\{\begin{array}{l}{|lo{g}_{2}x|,0<x<2}\\{\frac{x+2}{2x},x≥2}\end{array}\right.$的圖象,從而可得ab=1,$\frac{1}{2}$<f(c)<1;從而求得.

解答 解:作函數(shù)f(x)=$\left\{\begin{array}{l}{|lo{g}_{2}x|,0<x<2}\\{\frac{x+2}{2x},x≥2}\end{array}\right.$的圖象如下,

∵0<a<b<c,滿足f(a)=f(b)=f(c),
∴-log2a=log2b,即ab=1;
∵f(c)=$\frac{c+2}{2c}$=$\frac{1}{2}$+$\frac{1}{c}$,
∴$\frac{1}{2}$<f(c)<1;
故1<$\frac{ab}{f(c)}$=$\frac{1}{f(c)}$<2;
故答案為:(1,2).

點(diǎn)評 本題考查了數(shù)形結(jié)合思想應(yīng)用及對數(shù)的運(yùn)算,同時考查了整體代換的思想應(yīng)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.函數(shù)f(x)=ax+loga(x+2)在[0,1]上的最大值與最小值之和為a,則a=$\frac{1}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知集合A={x|3≤3x≤27},B={x|log2x>1}.求A∩B,(∁RB)∪A.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.(1)已知圓(x+2)2+y2=1過橢圓C的一個頂點(diǎn)和焦點(diǎn),求橢圓C標(biāo)準(zhǔn)方程.
(2)已知橢圓$\frac{{x}^{2}}{8+k}$+$\frac{{y}^{2}}{9}$=1的離心率為$\frac{1}{2}$,求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.在△ABC中,如果sinA:sinB:sinC=2:3:4,那么tanC=-$\sqrt{15}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.函數(shù)y=cos2x的圖象的一條對稱軸方程是( 。
A.x=$\frac{π}{2}$B.x=$\frac{π}{8}$C.x=-$\frac{π}{8}$D.x=-$\frac{π}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.在數(shù)列{an}中,$\frac{{a}_{n+1}}{{a}_{n}}$=2,a1=$\frac{1}{2}$,則a1+a2+a3+…+an=$\frac{{2}^{n}-1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.函數(shù)f(x)=$\frac{1}{1-x}$+lg(2+x)的定義域是( 。
A.(-2,+∞)B.(-∞,-2)C.(-2,1)D.(-2,1)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知p:$\frac{1}{4}$≤2x≤$\frac{1}{2}$,q:x+$\frac{1}{x}$∈[-$\frac{5}{2}$,-2],則q是p的( 。
A.充分不必要條件B.必要不充分條件
C.必要條件D.既不充分也不必要條件

查看答案和解析>>

同步練習(xí)冊答案