10.函數(shù)f(x)=ax+loga(x+2)在[0,1]上的最大值與最小值之和為a,則a=$\frac{1}{6}$.

分析 根據(jù)函數(shù)f(x)在[0,1]上為單調(diào)函數(shù),結(jié)合題意可得:f(0)+f(1)=(1+loga2)+(a+loga3)=a,由此求得a的值.

解答 解:當a>1時,y=ax和y=loga(x+2)都為增函數(shù),即有y=f(x)為增函數(shù);
當0<a<1時,y=ax和y=loga(x+2)都為減函數(shù),即有y=f(x)為減函數(shù).
故函數(shù)f(x)=ax+loga(x+2)(a>0,且a≠1)在[0,1]上必為單調(diào)函數(shù),
由于f(x)在[0,1]上的最大值與最小值之和為a,
故有 f(0)+f(1)=(1+loga2)+(a+loga3)=a,
解得a=$\frac{1}{6}$.
故答案為:$\frac{1}{6}$.

點評 本題主要考查指數(shù)函數(shù)和對數(shù)函數(shù)的單調(diào)性的運用,考查運算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知正六棱臺的上、下底面邊長分別為2、8,側(cè)棱長等于9,求這個棱臺的高和斜高.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.設(shè) P點在圓x2+(y-2)2=1上移動,點Q在橢圓$\frac{x^2}{9}+{y^2}=1$上移動,則|PQ|的最大值是1+$\frac{3\sqrt{6}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知如圖(1)的圖象對應(yīng)的函數(shù)為y=f(x),給出①y=f(|x|);②y=|f(x)|-a;③y=-f(|x|);④y=f(-|x|).⑤y=|f(|x|)|-a,則如圖(2)的圖象對應(yīng)的函數(shù)可能是五個式子中的( 。
A.B.②④C.①②D.②③④⑤

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知x2+y2=4x,則x2+y2的取值范圍是[0,16].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.在一次射擊訓(xùn)練中,某戰(zhàn)士連續(xù)射擊了兩次.設(shè)命題p是“第一次射擊擊中目標”,q是“第二次射擊擊中目標”.則命題“兩次都沒有擊中目標”用p,q及邏輯聯(lián)結(jié)詞可以表示為¬p∧¬q.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.某校從參加高一年級期末考試的學(xué)生中抽出40名學(xué)生,將其成績(均為整數(shù))分成六段[40,50),[50,60)…[90,100]后畫出如下部分頻率分布直方圖,觀察圖形的信息,回答下列問題:
(1)求成績在[40,50)分的學(xué)生有幾名?
(2)求第四小組的頻率,并補全頻率分布直方圖;
(3)估計這次考試的及格率(60分以上為及格)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.若函數(shù)f(x)=loga(x+b)的大致圖象如圖,其中a,b為常數(shù),則函數(shù)g(x)=a-x+b的大致圖象是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知函數(shù)f(x)=$\left\{\begin{array}{l}{|lo{g}_{2}x|,0<x<2}\\{\frac{x+2}{2x},x≥2}\end{array}\right.$,若0<a<b<c,滿足f(a)=f(b)=f(c),則$\frac{ab}{f(c)}$的范圍為(1,2).

查看答案和解析>>

同步練習(xí)冊答案