【題目】排列組合
(1)7位同學站成一排,甲、乙兩同學必須相鄰的排法共有多少種?
(2)7位同學站成一排,甲、乙和丙三個同學都不能相鄰的排法共有多少種?
(3)7位同學站成一排,甲不站排頭,乙不站排尾,不同站法種數(shù)有多少種?

【答案】
(1)解:先將甲、乙兩位同學“捆綁”在一起看成一個元素與其余的5個元素(同學)一起進行全排列有A66種方法;

再將甲、乙兩個同學“松綁”進行排列有A22種方法.所以這樣的排法一共有A66A22=1440種


(2)解:將甲、乙和丙三個同學插入到除甲、乙和丙之外4人全排所形成的5個空中的3個,故有A44A53=1440種
(3)解:甲站排頭,或乙站排尾有2A66﹣A55種不同的排法,

∴甲不站排頭,且乙不站排尾有: 種不同的排法


【解析】對這幾個事件不同排法和數(shù)的計算,根據(jù)分步原理與分類原理直接計算即可.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)y=f(x)是R上的偶函數(shù),且當x≤0時,f(x)=log (1﹣x)+x.
(1)求f(1)的值;
(2)求函數(shù)y=f(x)的表達式,并直接寫出其單調(diào)區(qū)間(不需要證明);
(3)若f(lga)+2<0,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱錐V﹣ABC中,平面VAB⊥平面ABC,三角形VAB為等邊三角形,AC⊥BC且 AC=BC= ,O、M分別為AB和VA的中點.

(1)求證:VB∥平面MOC;
(2)求直線MC與平面VAB所成角.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列中, ,其前項和滿足.

(1)求證:數(shù)列為等差數(shù)列,并求的通項公式;

(2)設 ,求數(shù)列的前項和;

(3)設為非零整數(shù),是否存在的值,使得對任意恒成立,若存在求出的值,若不存在說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=ax﹣ (a,b∈N*),f(1)= 且f(2)<2.
(Ⅰ)求a,b的值;
(Ⅱ)判斷并證明函數(shù)y=f(x)在區(qū)間(﹣1,+∞)上的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知冪函數(shù)y=f(x)的圖象過點(8,m)和(9,3).

(Ⅰ)求m的值;

(Ⅱ)若函數(shù)g(x)=logaf(x)(a>0,a≠1)在區(qū)間[16,36]上的最大值比最小值大1,求實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一個口袋中裝有個紅球個白球,一次摸獎從中摸兩個球,兩個球顏色不同則為中獎.

(1)用表示一次摸獎中獎的概率

(2)若,設三次摸獎(每次摸獎后球放回)恰好有次中獎,求的數(shù)學期望

(3)設三次摸獎(每次摸獎后球放回)恰好有一次中獎的概率,當取何值時, 最大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,直平行六面體中,為棱上任意一點,為底面(除外)上一點,已知在底面上的射影為,若再增加一個條件,就能得到,現(xiàn)給出以下條件:

;②上;③平面;④直線在平面的射影為同一條直線.其中一定能成為增加條件的是__________.(把你認為正確的都填上)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某廠生產(chǎn)某產(chǎn)品的年固定成本為250萬元,每生產(chǎn)千件,需另投入成本(萬元),若年產(chǎn)量不足千件, 的圖像是如圖的拋物線,此時的解集為,且的最小值是,若年產(chǎn)量不小于千件, ,每千件商品售價為50萬元,通過市場分析,該廠生產(chǎn)的商品能全部售完;

(1)寫出年利潤(萬元)關于年產(chǎn)量(千件)的函數(shù)解析式;

(2)年產(chǎn)量為多少千件時,該廠在這一商品的生產(chǎn)中所獲利潤最大?

查看答案和解析>>

同步練習冊答案