【題目】某廠生產(chǎn)某產(chǎn)品的年固定成本為250萬元,每生產(chǎn)千件,需另投入成本(萬元),若年產(chǎn)量不足千件, 的圖像是如圖的拋物線,此時的解集為,且的最小值是,若年產(chǎn)量不小于千件, ,每千件商品售價為50萬元,通過市場分析,該廠生產(chǎn)的商品能全部售完;

(1)寫出年利潤(萬元)關(guān)于年產(chǎn)量(千件)的函數(shù)解析式;

(2)年產(chǎn)量為多少千件時,該廠在這一商品的生產(chǎn)中所獲利潤最大?

【答案】(1) (2) 當(dāng)年產(chǎn)量千件時,該廠在這一商品的生產(chǎn)中所獲利潤最大,為萬元.

【解析】試題分析:(1)由題可知,利潤=售價-成本,分別對年產(chǎn)量不足件,以及年產(chǎn)量不小于件計算,代入不同區(qū)間的解析式,化簡求得

2)分別計算年產(chǎn)量不足件,以及年產(chǎn)量不小于件的利潤,當(dāng)年產(chǎn)量不足80件時,由配方法解得利潤的最大值為950萬元,當(dāng)年產(chǎn)量不小于件時,由均值不等式解得利潤最大值為1000萬元,故年產(chǎn)量為件時,利潤最大為萬元;

試題解析:(1)當(dāng)時, ;

當(dāng)時, ,

所以).

2)當(dāng)時,

此時,當(dāng)時, 取得最大值萬元.

當(dāng)時,

此時,當(dāng)時,即時, 取得最大值萬元,

所以年產(chǎn)量為件時,利潤最大為萬元.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】排列組合
(1)7位同學(xué)站成一排,甲、乙兩同學(xué)必須相鄰的排法共有多少種?
(2)7位同學(xué)站成一排,甲、乙和丙三個同學(xué)都不能相鄰的排法共有多少種?
(3)7位同學(xué)站成一排,甲不站排頭,乙不站排尾,不同站法種數(shù)有多少種?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我們稱滿足: )的數(shù)列為“級夢數(shù)列”.

(1)若是“級夢數(shù)列”且.求: 的值;

(2)若是“級夢數(shù)列”且滿足, ,求的最小值;

(3)若是“0級夢數(shù)列”且,設(shè)數(shù)列的前項和為.證明: ).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,有一塊半圓形空地,開發(fā)商計劃建一個矩形游泳池及其矩形附屬設(shè)施,并將剩余空地進(jìn)行綠化,園林局要求綠化面積應(yīng)最大化.其中半圓的圓心為,半徑為,矩形的一邊在直徑上,點、、在圓周上,、在邊上,且,設(shè)

(1)記游泳池及其附屬設(shè)施的占地面積為,求的表達(dá)式;

(2)怎樣設(shè)計才能符合園林局的要求?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合A={x|1<x<3},集合B={x|2m<x<1﹣m}.
(1)若m=﹣1求A∩B;
(2)若A∩B=,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的定義域為,其中為常數(shù);

(1)若,且是奇函數(shù),求的值;

(2)若 ,函數(shù)的最小值是,求的最大值;

(3)若,在上存在個點 ,滿足, ,

,使得,

求實數(shù)的取值范圍;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 的離心率為,以橢圓長、短軸四個端點為頂點為四邊形的面積為.

(Ⅰ)求橢圓的方程;

(Ⅱ)如圖所示,記橢圓的左、右頂點分別為,當(dāng)動點在定直線上運動時,直線分別交橢圓于兩點、,求四邊形面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的極小值為0.

(1)求實數(shù)的值;

(2)若不等式對任意恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),關(guān)于的不等式只有1個整數(shù)解,則實數(shù)的取值范圍是( )

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊答案