已知橢圓
過(guò)點(diǎn)
,且離心率為
.
(1)求橢圓
的方程;
(2)
為橢圓
的左右頂點(diǎn),直線
與
軸交于點(diǎn)
,點(diǎn)
是橢圓
上異于
的動(dòng)點(diǎn),直線
分別交直線
于
兩點(diǎn).證明:當(dāng)點(diǎn)
在橢圓
上運(yùn)動(dòng)時(shí),
恒為定值.
解:(1)由題意可知,
, 而
, 且
. 解得
,
所以,橢圓的方程為
.
(2)
.設(shè)
,
,
……………6分
直線
的方程為
,令
,則
,
即
;
直線
的方程為
,令
,則
,
即
;
而
,即
,代入上式,
∴
, 所以
為定值
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:單選題
設(shè)
P是橢圓
+
=1上一點(diǎn),
F1、
F2是橢圓的焦點(diǎn),若|
PF1|等于4,則|
PF2|等于( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:解答題
(本小題滿分12分)已知橢圓
經(jīng)過(guò)點(diǎn)
,一個(gè)焦點(diǎn)是
.
(Ⅰ)求橢圓
的方程;
(Ⅱ)設(shè)橢圓
與
軸的兩個(gè)交點(diǎn)為
、
,點(diǎn)
在直線
上,直線
、
分別與橢圓
交于
、
兩點(diǎn).試問(wèn):當(dāng)點(diǎn)
在直線
上運(yùn)動(dòng)時(shí),直線
是否恒經(jīng)過(guò)定點(diǎn)
?證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:解答題
已知
為坐標(biāo)原點(diǎn),
為橢圓
在
軸正半軸上的焦點(diǎn),過(guò)
且斜率為
的直線
與
交與
、
兩點(diǎn),點(diǎn)
滿足
(Ⅰ)小題1:證明:點(diǎn)
在
上;
(Ⅱ)小題2:設(shè)點(diǎn)
關(guān)于點(diǎn)
的對(duì)稱點(diǎn)為
,證明:
、
、
、
四點(diǎn)在同一圓上。
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:解答題
(本大題共12分)
過(guò)點(diǎn)P(1,0
)作直線交橢圓
于A,B兩點(diǎn),若
,求直線
的方程。
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:單選題
已知橢圓
+
=1(a>b>0)與雙曲線
-
=1有相同的焦點(diǎn),則橢圓的離心率為
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:單選題
.已知橢圓
與雙曲線
有相同的焦點(diǎn),則橢圓的離心率為 ( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:填空題
若橢圓經(jīng)過(guò)點(diǎn)(2,3),且焦點(diǎn)為
,則這個(gè)橢圓的離心率等于_________________:
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:填空題
在
中,∠ABC=450,∠ACB=600,
繞BC旋轉(zhuǎn)一周,記以AB為母線的圓錐為M1
,記以AC為母線的圓錐為M2,m是圓錐M1任一母線,則圓錐M2的母線中與m垂直的直線有 ▲ 條
查看答案和解析>>