【題目】已知函數(shù)f(x)=a(|sinx|+|cosx|)﹣ sin2x﹣1,若f( )= ﹣ .
(1)求a的值,并寫(xiě)出函數(shù)f(x)的最小正周期(不需證明);
(2)是否存在正整數(shù)k,使得函數(shù)f(x)在區(qū)間[0,kπ]內(nèi)恰有2017個(gè)零點(diǎn)?若存在,求出k的值,若不存在,請(qǐng)說(shuō)明理由.
【答案】
(1)解:函數(shù)f(x)=a(|sinx|+|cosx|)﹣ sin2x﹣1,
∵f( )= ﹣ .
∴a(sin +cos )﹣ sin ﹣1= ﹣ .
解得:a=1,
函數(shù)f(x)的最小正周期T=π
(2)解:存在n=504,滿(mǎn)足題意:
理由如下:
當(dāng) 時(shí), ,
設(shè)t=sinx+cosx,則 ,sin2x=t2﹣1,
則 , 可得 t=1或 ,
由t=sinx+cosx圖象可知,x在 上有4個(gè)零點(diǎn)滿(mǎn)足題意.
當(dāng) 時(shí), ,t=sinx﹣cosx,
則 ,sin2x=1﹣t2,
, ,t=1或 ,
∵ ,
∴x在 上不存在零點(diǎn).
綜上討論知:函數(shù)f(x)在[0,π)上有4個(gè)零點(diǎn),而2017=4×504+1,
此函數(shù)在[0,504π]有2017個(gè)零點(diǎn),所以存在正整數(shù)k=504滿(mǎn)足題意.
【解析】(1)根據(jù)f( )= ﹣ 帶入即可求解a的值.因?yàn)閨sinx|、|cosx|、sin2x的周期是都π,故得函數(shù)f(x)的最小正周期.(2)令k=1,討論[0,π]內(nèi)存在的零點(diǎn)情況,從而討論是否存在k內(nèi)恰有2017個(gè)零點(diǎn)即可.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知0<α<π,sin(π﹣α)+cos(π+α)=m.
(1)當(dāng)m=1時(shí),求α;
(2)當(dāng) 時(shí),求tanα的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)F1 , F2分別是橢圓E:x2+ =1(0<b<1)的左、右焦點(diǎn),過(guò)F1的直線(xiàn)l與E相交于A、B兩點(diǎn),且|AF2|,|AB|,|BF2|成等差數(shù)列. (Ⅰ)求|AB|;
(Ⅱ)若直線(xiàn)l的斜率為1,求b的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=sin2ωx+2 cosωxsinωx+sin(ωx+ )sin(ωx﹣ )(ω>0),且f(x)的最小正周期為π.
(1)求ω的值;
(2)求函數(shù)f(x)在區(qū)間(0,π)上的單調(diào)增區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓C: (a>b>0)的左、右焦點(diǎn)分別為F1、F2 , 離心率e= ,與雙曲線(xiàn) 有相同的焦點(diǎn). (I)求橢圓C的標(biāo)準(zhǔn)方程;
(II)過(guò)點(diǎn)F1的直線(xiàn)l與該橢圓C交于M、N兩點(diǎn),且| + N|= ,求直線(xiàn)l的方程.
(Ⅲ)是否存在圓心在原點(diǎn)的圓,使得該圓的任一條切線(xiàn)與橢圓C有兩個(gè)交點(diǎn)A、B,且OA⊥OB?若存在,寫(xiě)出該圓的方程,否則,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=2x+cosα﹣2﹣x+cosα , x∈R,且 .
(1)若0≤α≤π,求α的值;
(2)當(dāng)m<1時(shí),證明:f(m|cosθ|)+f(1﹣m)>0.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知集合A={x|m﹣1≤x≤2m+3},函數(shù)f(x)=lg(﹣x2+2x+8)的定義域?yàn)锽.
(1)當(dāng)m=2時(shí),求A∪B、(RA)∩B;
(2)若A∩B=A,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2014年5月,北京市提出地鐵分段計(jì)價(jià)的相關(guān)意見(jiàn),針對(duì)“你能接受的最高票價(jià)是多少?”這個(gè)問(wèn)題,在某地鐵站口隨機(jī)對(duì)50人進(jìn)行調(diào)查,調(diào)查數(shù)據(jù)的頻率分布直方圖及被調(diào)查者中35歲以下的人數(shù)與統(tǒng)計(jì)結(jié)果如下: (Ⅰ)根據(jù)頻率分布直方圖,求a的值,并估計(jì)眾數(shù),說(shuō)明此眾數(shù)的實(shí)際意義;
(Ⅱ)從“能接受的最高票價(jià)”落在[8,10),[10,12]的被調(diào)查者中各隨機(jī)選取3人進(jìn)行追蹤調(diào)查,記選中的6人中35歲以上(含35歲)的人數(shù)為X,求隨機(jī)變量X的分布列及數(shù)學(xué)期望.
最高票價(jià) | 35歲以下人數(shù) |
[2,4) | 2 |
[4,6) | 8 |
[6,8) | 12 |
[8,10) | 5 |
[10,12] | 3 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com