【題目】在中,,,分別為內(nèi)角,,的對(duì)邊,且滿(mǎn).
(1)求的大;
(2)再在①,②,③這三個(gè)條件中,選出兩個(gè)使唯一確定的條件補(bǔ)充在下面的問(wèn)題中,并解答問(wèn)題.若________,________,求的面積.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為弘揚(yáng)中華民族優(yōu)秀傳統(tǒng)文化,樹(shù)立正確的價(jià)值導(dǎo)向,落實(shí)立德樹(shù)人根本任務(wù),某市組織30000名高中學(xué)生進(jìn)行古典詩(shī)詞知識(shí)測(cè)試,根據(jù)男女學(xué)生人數(shù)比例,使用分層抽樣的方法從中隨機(jī)抽取100名學(xué)生,記錄他們的分?jǐn)?shù),整理所得頻率分布直方圖如圖:
(Ⅰ)規(guī)定成績(jī)不低于60分為及格,不低于85分為優(yōu)秀,試估計(jì)此次測(cè)試的及格率及優(yōu)秀率;
(Ⅱ)試估計(jì)此次測(cè)試學(xué)生成績(jī)的中位數(shù);
(Ⅲ)已知樣本中有的男生分?jǐn)?shù)不低于80分,且樣本中分?jǐn)?shù)不低于80分的男女生人數(shù)相等,試估計(jì)參加本次測(cè)試30000名高中生中男生和女生的人數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,函數(shù).
(1)求實(shí)數(shù)的值,使得為奇函數(shù);
(2)若關(guān)于的方程有兩個(gè)不同實(shí)數(shù)解,求的取值范圍;
(3)若關(guān)于的不等式對(duì)任意恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)點(diǎn),的坐標(biāo)分別為,,直線和相交于點(diǎn),且和的斜率之差是1.
(1)求點(diǎn)的軌跡的方程;
(2)過(guò)軌跡上的點(diǎn),,作圓:的兩條切線,分別交軸于點(diǎn),.當(dāng)的面積最小時(shí),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】四棱錐S-ABCD的底面為正方形,,AC與BD交于E,M,N分別為SD,SA的中點(diǎn),.
(1)求證:平面平面SBD;
(2)求直線BD與平面CMN所成角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線()與雙曲線(,)有相同的焦點(diǎn),點(diǎn)是兩條曲線的一個(gè)交點(diǎn),且軸,則該雙曲線經(jīng)過(guò)一、三象限的漸近線的傾斜角所在的區(qū)間是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市2013年發(fā)放汽車(chē)牌照12萬(wàn)張,其中燃油型汽車(chē)牌照10萬(wàn)張,電動(dòng)型汽車(chē)2萬(wàn)張,為了節(jié)能減排和控制總量,從2013年開(kāi)始,每年電動(dòng)型汽車(chē)牌照按50%增長(zhǎng),而燃油型汽車(chē)牌照每一年比上一年減少0.5萬(wàn)張,同時(shí)規(guī)定一旦某年發(fā)放的牌照超過(guò)15萬(wàn)張,以后每一年發(fā)放的電動(dòng)車(chē)的牌照的數(shù)量維持在這一年的水平不變.
(1)記2013年為第一年,每年發(fā)放的燃油型汽車(chē)牌照數(shù)量構(gòu)成數(shù)列,每年發(fā)放電動(dòng)型汽車(chē)牌照數(shù)為構(gòu)成數(shù)列,完成下列表格,并寫(xiě)出這兩個(gè)數(shù)列的通項(xiàng)公式;
(2)從2013年算起,累計(jì)各年發(fā)放的牌照數(shù),哪一年開(kāi)始超過(guò)200萬(wàn)張?
. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知中,,平面,是的中點(diǎn).
(Ⅰ)若是的中點(diǎn),求證:平面平面;
(Ⅱ)若,求平面與平面所成的銳二面角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】近來(lái)天氣變化無(wú)常,陡然升溫、降溫幅度大于的天氣現(xiàn)象出現(xiàn)增多.陡然降溫幅度大于容易引起幼兒傷風(fēng)感冒疾病.為了解傷風(fēng)感冒疾病是否與性別有關(guān),在某婦幼保健院隨機(jī)對(duì)人院的名幼兒進(jìn)行調(diào)查,得到了如下的列聯(lián)表,若在全部名幼兒中隨機(jī)抽取人,抽到患傷風(fēng)感冒疾病的幼兒的概率為,
(1)請(qǐng)將下面的列聯(lián)表補(bǔ)充完整;
患傷風(fēng)感冒疾病 | 不患傷風(fēng)感冒疾病 | 合計(jì) | |
男 | 25 | ||
女 | 20 | ||
合計(jì) | 100 |
(2)能否在犯錯(cuò)誤的概率不超過(guò)的情況下認(rèn)為患傷風(fēng)感冒疾病與性別有關(guān)?說(shuō)明你的理由;
(3)已知在患傷風(fēng)感冒疾病的名女性幼兒中,有名又患黃痘病.現(xiàn)在從患傷風(fēng)感冒疾病的名女性中,選出名進(jìn)行其他方面的排查,記選出患黃痘病的女性人數(shù)為,求的分布列以及數(shù)學(xué)期望.下面的臨界值表供參考:
參考公式:,其中
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com