【題目】已知,函數(shù).

(1)求實數(shù)的值,使得為奇函數(shù);

(2)若關(guān)于的方程有兩個不同實數(shù)解,求的取值范圍;

(3)若關(guān)于的不等式對任意恒成立,求的取值范圍.

【答案】(1) ;(2) (3)

【解析】

(1)若為奇函數(shù),則,進(jìn)而可得實數(shù)的值,
2)若關(guān)于的方程有兩個不同的實數(shù)解,即方程有兩個不同實數(shù)解,解出兩個實數(shù)根,然后滿足對數(shù)的真數(shù)為正即可.
3)若關(guān)于的不等式對任意恒成立,即,對任意恒成立,打開絕對值,進(jìn)而可得的取值范圍.

(1) 為奇函數(shù),則

所以

,所以

解得:

(2) 方程有兩個不同實數(shù)解

即方程有兩個不同實數(shù)解

即方程有兩個不同實數(shù)解.

設(shè),則可以化為:

,即

當(dāng)時方程不可能有兩個不等實數(shù)根,所以

,

根據(jù)對數(shù)的真數(shù)必須大于0,即

即:

,則

故方程滿足條件的實數(shù)的范圍是.

(3) 不等式對任意恒成立

即不等式對任意恒成立.

對任意恒成立.

所以對任意恒成立.

對任意恒成立.

,

(當(dāng)且僅當(dāng)時取等號).

上單調(diào)遞增,所以當(dāng)時,

所以

當(dāng)時,不等式對任意恒成立.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè),對于項數(shù)為的有窮數(shù)列,令中最大值,稱數(shù)列為數(shù)列的“創(chuàng)新數(shù)列”.例如數(shù)列3,5,4,7的創(chuàng)新數(shù)列為3,55,7. 考查正整數(shù)1,2,…,的所有排列,將每種排列都視為一個有窮數(shù)列.

1)若,寫出創(chuàng)新數(shù)列為3,4,4,4的所有數(shù)列;

2)是否存在數(shù)列的創(chuàng)新數(shù)列為等比數(shù)列?若存在,求出符合條件的的創(chuàng)新數(shù)列;若不存在,請說明理由.

3)是否存在數(shù)列,使它的創(chuàng)新數(shù)列為等差數(shù)列?若存在,求出滿足所有條件的數(shù)列的個數(shù);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】黨的十九大報告指出,在全面建成小康社會的決勝階段,讓貧困地區(qū)同全國人民共同進(jìn)入全面小康社會是我們黨的莊嚴(yán)承諾.脫真貧、真脫貧的過程中,精準(zhǔn)扶貧助推社會公平顯得尤其重要.若某地區(qū)有100戶貧困戶,經(jīng)過一年扶貧后,為了考查該地區(qū)的精準(zhǔn)扶貧的成效該地區(qū)脫貧標(biāo)準(zhǔn)為每戶人均年收入不少于4000,現(xiàn)從該地區(qū)隨機(jī)抽取A、B兩個村莊,再從這兩個村莊的貧困戶中隨機(jī)抽取20戶,調(diào)查每戶的現(xiàn)人均年收入,繪制如圖所示的莖葉圖單位:百元.

1)觀察莖葉圖中的數(shù)據(jù),判斷哪個村莊扶貧成效較好?并說明理由;

2)計劃對沒有脫貧的貧困戶進(jìn)一步實行精準(zhǔn)扶貧,下一年的資金投入方案如下:對人均年收入不高于2000元的貧困戶,每戶每年增加扶貧資金5000元;對人均年收入高于2000元但不高于3000元的貧困戶,每戶每年增加扶貧資金3000元;對人均年收入高于3000元但不高于4000元的貧困戶,每戶每年增加扶貧資金1000元;對已經(jīng)脫貧的貧困戶不再增加扶貧資金投入.依據(jù)此方案,試估計下一年該地區(qū)共需要增加扶貧資金多少元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司生產(chǎn)的某批產(chǎn)品的銷售量萬件(生產(chǎn)量與銷售量相等)與促銷費(fèi)用萬元滿足(其中,為正常數(shù)).已知生產(chǎn)該產(chǎn)品還需投入成本萬元(不含促銷費(fèi)用),產(chǎn)品的銷售價格定為件.

1)將該產(chǎn)品的利潤萬元表示為促銷費(fèi)用萬元的函數(shù);

2)促銷費(fèi)用投入多少萬元時,該公司的利潤最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】四棱錐的底面ABCD為直角梯形,,,為正三角形.

點(diǎn)M為棱AB上一點(diǎn),若平面SDM,,求實數(shù)的值;

,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】有次水下考古活動中,潛水員需潛入水深為30米的水底進(jìn)行作業(yè),其用氧量包含以下三個方面:①下潛時,平均速度為每分鐘米,每分鐘的用氧量為升;②水底作業(yè)需要10分鐘,每分鐘的用氧量為0.3升;③返回水面時,速度為每分鐘米,每分鐘用氧量為0.2升;設(shè)潛水員在此次考古活動中的總用氧量為升;

(1)將表示為的函數(shù);

(2)若,求總用氧量的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓),右焦點(diǎn),點(diǎn)在橢圓上;

1)求橢圓C的標(biāo)準(zhǔn)方程;

2)是否存在過原點(diǎn)的直線l與橢圓C交于AB兩點(diǎn),且?若存在,請求出所有符合要求的直線;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中,,,分別為內(nèi)角,,的對邊,且滿.

1)求的大;

2)再在①,②,③這三個條件中,選出兩個使唯一確定的條件補(bǔ)充在下面的問題中,并解答問題.________,________,求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,,是各項均為正數(shù)的等差數(shù)列,其公差大于零.若線段,,,的長分別為,,,,則( .

A.對任意的,均存在以,為三邊的三角形

B.對任意的,均不存在以,,為三邊的三角形

C.對任意的,均存在以,,為三邊的三角形

D.對任意的,均不存在以,為三邊的三角形

查看答案和解析>>

同步練習(xí)冊答案