精英家教網 > 高中數學 > 題目詳情

【題目】已知函數

(1)若曲線處切線的斜率為,求此切線方程;

(2)若有兩個極值點,求的取值范圍,并證明:

【答案】(1);(2),證明見解析.

【解析】分析:(1)由函數的解析式可得,利用可得則切點為,切線方程為

(2)結合(1)中導函數的解析令,得構造函數,令,則利用導函數研究函數的單調性可知遞增,在遞減,所以結合題意可得的取值范圍是由極值點的性質可得不妨設,則,,結合的單調性可得,據此有,

詳解:(1),,解得

,故切點為,

所以曲線處的切線方程為

(2),令,得

,則,

且當時,;當時,;時,

,得

且當時,;當時,

遞增,在遞減,所以

所以當時,有一個極值點;

時,有兩個極值點;

時,沒有極值點.

綜上,的取值范圍是

因為的兩個極值點,所以

不妨設,則,

因為遞減,且,所以,即

由①可得,即,

由①,②得,所以

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數有兩個極值點(為自然對數的底數).

(Ⅰ)求實數的取值范圍;

(Ⅱ)求證.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知,,其中.

(Ⅰ)當時,求函數的單調區(qū)間;

(Ⅱ)若恒成立,求的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓的左、右焦點分別為也為拋物線的焦點,點在第一象限的交點,且.

(I)求橢圓的方程;

(II)延長,交橢圓于點,交拋物線于點,求三角形的面積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】阿基米德是古希臘偉大的哲學家、數學家、物理學家,對幾何學、力學等學科作出過卓越貢獻.為調查中學生對這一偉大科學家的了解程度,某調查小組隨機抽取了某市的100名高中生,請他們列舉阿基米德的成就,把能列舉阿基米德成就不少于3項的稱為“比較了解”,少于三項的稱為“不太了解”他們的調查結果如下:

(1)完成如下列聯(lián)表,并判斷是否有的把握認為,了解阿基米德與選擇文理科有關?

(2)在抽取的100名高中生中,按照文理科采用分層抽樣的方法抽取10人的樣本.

(。┣蟪槿〉奈目粕屠砜粕娜藬;

(ⅱ)從10人的樣本中隨機抽取兩人,求兩人都是文科生的概率.

參考數據:

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】海水養(yǎng)殖場進行某水產品的新、舊網箱養(yǎng)殖方法的產量對比,收獲時各隨機抽取了100個網箱,測量各箱水產品的產量(單位:kg), 其頻率分布直方圖如下:

(1)記A表示事件“舊養(yǎng)殖法的箱產量低于50 kg”,估計A的概率;

(2)填寫下面列聯(lián)表,并根據列聯(lián)表判斷是否有99%的把握認為箱產量與養(yǎng)殖方法有關:

箱產量<50 kg

箱產量≥50 kg

舊養(yǎng)殖法

新養(yǎng)殖法

(3)根據箱產量的頻率分布直方圖,對這兩種養(yǎng)殖方法的優(yōu)劣進行比較.

附:

P

0.050 0.010 0.001

k

3.841 6.635 10.828

.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】近年來,隨著我國汽車消費水平的提高,二手車流通行業(yè)得到迅猛發(fā)展.某汽車交易市場對2017年成交的二手車交易前的使用時間(以下簡稱“使用時間”)進行統(tǒng)計,得到頻率分布直方圖如圖1.

圖1 圖2

(1)記“在年成交的二手車中隨機選取一輛,該車的使用年限在”為事件試估計的概率;

(2)根據該汽車交易市場的歷史資料,得到散點圖如圖2,其中(單位:年)表示二手車的使用時間,(單位:萬元)表示相應的二手車的平均交易價格.由散點圖看出,可采用作為二手車平均交易價格關于其使用年限的回歸方程,相關數據如下表(表中,):

5.5

8.7

1.9

301.4

79.75

385

①根據回歸方程類型及表中數據,建立關于的回歸方程;

②該汽車交易市場對使用8年以內(含8年)的二手車收取成交價格的傭金,對使用時間8年以上(不含8年)的二手車收取成交價格的傭金.在圖1對使用時間的分組中,以各組的區(qū)間中點值代表該組的各個值.若以2017年的數據作為決策依據,計算該汽車交易市場對成交的每輛車收取的平均傭金.

附注:①對于一組數據,其回歸直線的斜率和截距的最小二乘估計分別為;

②參考數據:

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系xOy中,曲線C1的參數方程為 (φ為參數),在以O為極點,x軸的正半軸為極軸的極坐標系中,曲線C2是圓心為(2,),半徑為1的圓.

(1)求曲線C1的普通方程和C2的直角坐標方程;

(2)設M為曲線C1上的點,N為曲線C2上的點,求|MN|的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數,曲線處的切線方程為.

(1)求的值;

(2)求證:時,;

(3)求證:.

查看答案和解析>>

同步練習冊答案