【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù),).在以坐標(biāo)原點(diǎn)為極點(diǎn)、軸的非負(fù)半軸為極軸的極坐標(biāo)系中,曲線的極坐標(biāo)方程為.
(1)若點(diǎn)在直線上,求直線的極坐標(biāo)方程;
(2)已知,若點(diǎn)在直線上,點(diǎn)在曲線上,且的最小值為,求的值.
【答案】(1)
(2)
【解析】
(1)利用消參法以及點(diǎn)求解出的普通方程,根據(jù)極坐標(biāo)與直角坐標(biāo)的轉(zhuǎn)化求解出直線的極坐標(biāo)方程;
(2)將的坐標(biāo)設(shè)為,利用點(diǎn)到直線的距離公式結(jié)合三角函數(shù)的有界性,求解出取最小值時(shí)對(duì)應(yīng)的值.
(1)消去參數(shù)得普通方程為,
將代入,可得,即
所以的極坐標(biāo)方程為
(2)的直角坐標(biāo)方程為
直線的直角坐標(biāo)方程
設(shè)的直角坐標(biāo)為
∵在直線上,∴的最小值為到直線的距離的最小值
∵,∴當(dāng),時(shí)取得最小值
即,∴
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐P-ABCD的底面為正方形,PD⊥底面ABCD.設(shè)平面PAD與平面PBC的交線為l.
(1)證明:l⊥平面PDC;
(2)已知PD=AD=1,Q為l上的點(diǎn),求PB與平面QCD所成角的正弦值的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在多面體中,為矩形,為等腰梯形,,,,且,平面平面,,分別為,的中點(diǎn).
(Ⅰ)求證:平面;
(Ⅱ)若直線與平面所成的角的正弦值為,求多面體的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知鮮切花的質(zhì)量等級(jí)按照花枝長(zhǎng)度進(jìn)行劃分,劃分標(biāo)準(zhǔn)如下表所示.
花枝長(zhǎng)度 | |||
鮮花等級(jí) | 三級(jí) | 二級(jí) | 一級(jí) |
某鮮切花加工企業(yè)分別從甲乙兩個(gè)種植基地購進(jìn)鮮切花,現(xiàn)從兩個(gè)種植基地購進(jìn)的鮮切花中分別隨機(jī)抽取30個(gè)樣品,測(cè)量花枝長(zhǎng)度并進(jìn)行等級(jí)評(píng)定,所抽取樣品數(shù)據(jù)如圖所示.
(1)根據(jù)莖葉圖比較兩個(gè)種植基地鮮切花的花枝長(zhǎng)度的平均值及分散程度(不要求計(jì)算具體值,給出結(jié)論即可);
(2)若從等級(jí)為三級(jí)的樣品中隨機(jī)選取2個(gè)進(jìn)行新產(chǎn)品試加工,求選取的2個(gè)全部來自乙種植基地的概率;
(3)根據(jù)該加工企業(yè)的加工和銷售記錄,了解到來自乙種植基地的鮮切花的加工產(chǎn)品的單件利潤(rùn)為4元;來自乙種植基地的鮮切花的加工產(chǎn)品的單件成本為10元,銷售率(某等級(jí)產(chǎn)品的銷量與產(chǎn)量的比值)及單價(jià)如下表所示.
三級(jí)花加工產(chǎn)品 | 二級(jí)花加工產(chǎn)品 | 一級(jí)花加工產(chǎn)品 | |
銷售率 | |||
單價(jià)/(元/件) | 12 | 16 | 20 |
由于鮮切花加工產(chǎn)品的保鮮特點(diǎn),未售出的產(chǎn)品均可按原售價(jià)的50%處理完畢.用樣本估計(jì)總體,如果僅從單件產(chǎn)品的利潤(rùn)的角度考慮,該鮮切花加工企業(yè)應(yīng)該從哪個(gè)種植基地購進(jìn)鮮切花?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知曲線的參數(shù)方程為(為參數(shù)).以直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求的普通方程和的直角坐標(biāo)方程;
(2)若過點(diǎn)的直線與交于,兩點(diǎn),與交于,兩點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,①已知點(diǎn),直線:,動(dòng)點(diǎn)滿足到點(diǎn)的距離與到直線的距離之比為;②已知圓的方程為,直線為圓的切線,記點(diǎn)到直線的距離分別為,動(dòng)點(diǎn)滿足;③點(diǎn),分別在軸,軸上運(yùn)動(dòng),且,動(dòng)點(diǎn)滿足.
(1)在①,②,③這三個(gè)條件中任選一個(gè),求動(dòng)點(diǎn)的軌跡方程;
(2)記(1)中的軌跡為,經(jīng)過點(diǎn)的直線交于,兩點(diǎn),若線段的垂直平分線與軸相交于點(diǎn),求點(diǎn)縱坐標(biāo)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若數(shù)列滿足,,記數(shù)列的前n項(xiàng)和是,則( )
A.若數(shù)列是常數(shù)列,則
B.若,則數(shù)列單調(diào)遞減
C.若,則
D.若,任取中的9項(xiàng)構(gòu)成數(shù)列的子數(shù)列,則不全是單調(diào)數(shù)列
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知?jiǎng)訄AP經(jīng)過點(diǎn),并且與圓相切.
(Ⅰ)求圓心P的軌跡C的方程;
(Ⅱ)O是坐標(biāo)原點(diǎn),過點(diǎn)的直線與C交于A,B兩點(diǎn),在C上是否存在點(diǎn)Q,使得四邊形是平行四邊形?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com