【題目】已知鮮切花的質(zhì)量等級按照花枝長度進(jìn)行劃分,劃分標(biāo)準(zhǔn)如下表所示.

花枝長度

鮮花等級

三級

二級

一級

某鮮切花加工企業(yè)分別從甲乙兩個(gè)種植基地購進(jìn)鮮切花,現(xiàn)從兩個(gè)種植基地購進(jìn)的鮮切花中分別隨機(jī)抽取30個(gè)樣品,測量花枝長度并進(jìn)行等級評定,所抽取樣品數(shù)據(jù)如圖所示.

1)根據(jù)莖葉圖比較兩個(gè)種植基地鮮切花的花枝長度的平均值及分散程度(不要求計(jì)算具體值,給出結(jié)論即可);

2)若從等級為三級的樣品中隨機(jī)選取2個(gè)進(jìn)行新產(chǎn)品試加工,求選取的2個(gè)全部來自乙種植基地的概率;

3)根據(jù)該加工企業(yè)的加工和銷售記錄,了解到來自乙種植基地的鮮切花的加工產(chǎn)品的單件利潤為4元;來自乙種植基地的鮮切花的加工產(chǎn)品的單件成本為10元,銷售率(某等級產(chǎn)品的銷量與產(chǎn)量的比值)及單價(jià)如下表所示.

三級花加工產(chǎn)品

二級花加工產(chǎn)品

一級花加工產(chǎn)品

銷售率

單價(jià)/(元/件)

12

16

20

由于鮮切花加工產(chǎn)品的保鮮特點(diǎn),未售出的產(chǎn)品均可按原售價(jià)的50%處理完畢.用樣本估計(jì)總體,如果僅從單件產(chǎn)品的利潤的角度考慮,該鮮切花加工企業(yè)應(yīng)該從哪個(gè)種植基地購進(jìn)鮮切花?

【答案】1)乙種植基地鮮切花的花枝長度的平均值大于甲種植基地鮮切花的花枝長度的平均值,甲種植基地鮮切花的花枝長度相對于乙種植基地更為集中.(2.(3)該鮮切花加工企業(yè)應(yīng)該從乙種植基地購進(jìn)鮮切花.

【解析】

1)結(jié)合莖葉圖即可看出平均值的大小關(guān)系以及數(shù)據(jù)集中程度;

2)從莖葉圖中求出三級的樣品共5個(gè),來自甲基地有2個(gè),來自乙基地的有3個(gè),則可求出基本事件總個(gè)數(shù)以及2個(gè)都來自乙基地基本事件個(gè)數(shù),即可求出概率;

3)分別求出三種花的銷售額,減去總的成本,結(jié)果除以個(gè)數(shù)即可得乙種植基地單件平均利潤,與4進(jìn)行比較,即可得出結(jié)論.

1)由莖葉圖可以看出,乙種植基地鮮切花的花枝長度的平均值大于甲種植基地鮮切花的花枝長度的平均值,

甲種植基地鮮切花的花枝長度相對于乙種植基地來說更為集中.

2)由題意知,三級的樣品共5個(gè),其中,來自甲基地有2個(gè),來自乙基地的有3個(gè),

則從5個(gè)樣品中隨機(jī)取2個(gè)共有 種可能,2個(gè)都來自乙基地共種可能,

則選取的2個(gè)全部來自乙種植基地的概率為.

3)根據(jù)莖葉圖可知,乙基地中,三級花共3個(gè),二級花共16個(gè),一級花共11個(gè),

則三級花的銷售額為 (元);

二級花的銷售額為 (元);

一級花的銷售額為 (元);

則乙種植基地單件平均利潤為(元).

因?yàn)?/span>,所以該鮮切花加工企業(yè)應(yīng)該從乙種植基地購進(jìn)鮮切花.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,給定個(gè)整點(diǎn),其中.

(Ⅰ)當(dāng)時(shí),從上面的個(gè)整點(diǎn)中任取兩個(gè)不同的整點(diǎn),求的所有可能值;

(Ⅱ)從上面個(gè)整點(diǎn)中任取個(gè)不同的整點(diǎn),.

i)證明:存在互不相同的四個(gè)整點(diǎn),滿足,;

ii)證明:存在互不相同的四個(gè)整點(diǎn),滿足,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直三棱柱中, 、分別為、的中點(diǎn), .

(1)求證:平面平面;

(2)若直線和平面所成角的正弦值等于,求二面角的平面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),.

1)若函數(shù)上是單調(diào)函數(shù),求實(shí)數(shù)m的取值范圍;

(2)當(dāng)時(shí),

i)求函數(shù)在點(diǎn)處的切線方程;

ii)若對任意,不等式恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為,在以O為極點(diǎn),x軸的非負(fù)半軸為極軸的極坐標(biāo)系中,直線l的極坐標(biāo)方程為

1)設(shè)曲線C與直線l的交點(diǎn)為AB,求弦AB的中點(diǎn)P的直角坐標(biāo);

2)動(dòng)點(diǎn)Q在曲線C上,在(1)的條件下,試求△OPQ面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2017727日上映以來,《戰(zhàn)狼2》的票房一路高歌猛進(jìn),并不斷刷新華語電影票房紀(jì)錄.825日官方宣布沖破53億票房之后,根據(jù)外媒Worldwide Box Office給出的2017年周末全球票房最新排名,《戰(zhàn)狼2》以8.151億美元(約54.18億元)的成績成功殺入前五.通過收集并整理了《戰(zhàn)狼2》上映前兩周的票房(單位:億元)數(shù)據(jù),繪制出下面的條形圖.根據(jù)該條形圖,下列結(jié)論錯(cuò)誤的是(

A.在《戰(zhàn)狼2》上映前兩周中,前四天票房逐日遞增

B.在《戰(zhàn)狼2》上映前兩周中,日票房超過2億元的共有12

C.在《戰(zhàn)狼2》上映前兩周中,85日,86日達(dá)到了票房的高峰期

D.在《戰(zhàn)狼2》上映前兩周中,前五日的票房平均數(shù)高于后五日的票房平均數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)曲線在點(diǎn)處的切線方程為,求的值;

(2)若,時(shí),,都有,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圖的右頂點(diǎn)與拋物線的焦點(diǎn)重合,橢圓的離心率為,過橢圓的右焦點(diǎn)且垂直于軸的直線截拋物線所得的弦長為.

1)求橢圓和拋物線的方程;

2)過點(diǎn)的直線與橢圓交于,兩點(diǎn),點(diǎn)關(guān)于軸的對稱點(diǎn)為.當(dāng)直線繞點(diǎn)旋轉(zhuǎn)時(shí),直線是否經(jīng)過一定點(diǎn)?請判斷并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】ABC的內(nèi)角AB,C的對邊分別為ab,c,已知△ABC的面積為

(1)求sinBsinC;

(2)若6cosBcosC=1,a=3,求△ABC的周長.

查看答案和解析>>

同步練習(xí)冊答案