【題目】某個服裝店經營某種服裝,在某周內獲純利y()與該周每天銷售這些服裝件數(shù)x之間有如下一組數(shù)據(jù):

x

3

4

5

6

7

8

9

y

66

69

73

81

89

90

91

已知280, yi3 487

(1);

(2)求純利y與每天銷售件數(shù)x之間的回歸直線方程;

(3)每天多銷售1件,純利y增加多少元?

【答案】16,79.86;(251.364.75x,(3)每天多銷售1件,純利平均增加4.75元.

【解析】試題分析:(1)根據(jù)平均數(shù)的公式,即可求得的值;

(2)利用回歸系數(shù)的計算公式,求解,代入,求得,即可得到回歸方程;

(3)利用回歸直線方程,即可作出每天多銷售1件,純利平均增加值,作出預測

試題解析:

(1) (3+4+5+…+9)=6,

(66+69+…+91)≈79.86.

(2)設回歸直線方程為x,

≈4.75.

≈79.86-4.75×6=51.36.

所求的回歸直線方程為=51.36+4.75x.

(3)每天多銷售1件,純利平均增加4.75元.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)f(x)= ,g(x)=lnx+ (a>0).
(1)求函數(shù)f(x)的極值;
(2)若x1、x2∈(0,+∞),使得g(x1)≤f(x2)成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)f(x)=lnx+ ,g(x)=ex (e是自然對數(shù)的底數(shù),a∈R).
(Ⅰ)求證:|f(x)|≥﹣(x﹣1)2+ ;
(Ⅱ)已知[x]表示不超過x的最大整數(shù),如[1.9]=1,[﹣2.1]=﹣3,若對任意x1≥0,都存在x2>0,使得g(x1)≥[f(x2)]成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)f(x)的定義域為U=(0,+),且滿足條件f(4)=1對任意的x1,x2∈U,有f(x1·x2=fx1+fx2),且當x1≠x2時,有>0。

(1)求f(1)的值;

(2)如果f(x+6)+f(x)>2,求x的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如表提供了某廠節(jié)能降耗技術改造后在生產A產品過程中記錄的產量x(噸)與相應的生產能耗y(噸)的幾組對應數(shù)據(jù),根據(jù)表提供的數(shù)據(jù),求出y關于x的線性回歸方程為 =0.7x+0.35,則下列結論錯誤的是(

x

3

4

5

6

y

2.5

t

4

4.5


A.產品的生產能耗與產量呈正相關
B.t的取值必定是3.15
C.回歸直線一定過點(4,5,3,5)
D.A產品每多生產1噸,則相應的生產能耗約增加0.7噸

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某公司為招聘新員工設計了一個面試方案:應聘者從6道備選題中一次性隨機抽取3道題,按照題目要求獨立完成.規(guī)定:至少正確完成其中2道題的便可通過.已知6道備選題中應聘者甲有4道題能正確完成,2道題不能完成;應聘者乙每題正確完成的概率都是 ,且每題正確完成與否互不影響.
(Ⅰ)分別求甲、乙兩人正確完成面試題數(shù)的分布列,并計算其數(shù)學期望;
(Ⅱ)請分析比較甲、乙兩人誰的面試通過的可能性大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為調查我校學生的用電情況,學校后勤部門組織抽取了100間學生宿舍某月用電量調查,發(fā)現(xiàn)每間宿舍用電量都在50度到350度之間,其頻率分布直方圖如圖所示.

(1)為降低能源損耗,節(jié)約用電,學校規(guī)定:每間宿舍每月用電量不超過200度時,按每度0.5元收取費用;超過200度,超過部分按每度1元收取費用.以t表示某宿舍的用電量(單位:度),以y表示該宿舍的用電費用(單位:元),求y與t的函數(shù)關系式?

(2)求圖中月用電量在(200,250]度的宿舍有多少間?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)f(x)=ax2+2(a﹣3)x+1在區(qū)間[﹣2,+∞)上遞減,則實數(shù)a的取值范圍是(
A.(﹣∞,0)
B.[﹣3,+∞)
C.[﹣3,0]
D.(0,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知α,β是平面,m,n是直線.下列命題中不正確的是 ( )
A.若m∥n,m⊥α,則n⊥α
B.若m∥α,α∩β=n,則m∥n
C.若m⊥α,m⊥β,則α∥β
D.若m⊥α, ,則α⊥β

查看答案和解析>>

同步練習冊答案