【題目】下列命題中正確的是(
A.“x<﹣1”是“x2﹣x﹣2>0”的必要不充分條件
B.“P且Q”為假,則P假且 Q假
C.命題“ax2﹣2ax+3>0恒成立”是真命題,則實(shí)數(shù)a的取值范圍是0≤a<3
D.命題“若x2﹣3x+2=0,則x=2”的否命題為“若x2﹣3x+2=0,則x≠2”

【答案】C
【解析】解:對(duì)于A:由x2﹣x﹣2>0,解得:x>2或x<﹣1, 故x<﹣1”是“x2﹣x﹣2>0”的充分不必要條件,
故A錯(cuò)誤;
對(duì)于B:“P且Q”為假,則P假或Q假,
故B錯(cuò)誤;
對(duì)于C:若命題“x∈R,ax2﹣2ax+3>0恒成立”是真命題,
則a=0,或 ,
解得:0≤a<3,
故C正確;
對(duì)于D:命題“若x2﹣3x+2=0,則x=2”的否命題為“若x2﹣3x+2≠0,則x≠2”,
故D錯(cuò)誤,
故選:C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知p:方程x2mx+1=0有兩個(gè)不相等的負(fù)根;q:方程4x2+4(m-2)x+1=0無實(shí)根.若pq為真,pq為假,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)等比數(shù)列的公比為,前項(xiàng)和.

(1)求的取值范圍;

(2)設(shè),記的前項(xiàng)和為,試比較的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知四棱錐P﹣ABCD,底面ABCD是直角梯形,AD∥BC,∠BCD=90°,PA⊥底面ABCD,△ABM是邊長為2的等邊三角形,
(Ⅰ)求證:平面PAM⊥平面PDM;
(Ⅱ)若點(diǎn)E為PC中點(diǎn),求二面角P﹣MD﹣E的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x﹣
(1)用函數(shù)單調(diào)性的定義證明:函數(shù)f(x)在區(qū)間(0,+∞)上為增函數(shù);
(2)方程2tf(4t)﹣mf(2t)=0,當(dāng)t∈[1,2]時(shí),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】F1 , F2分別是雙曲線x2 =1(b>0)的左、右焦點(diǎn),過F2的直線l與雙曲線的左右兩支分別交于A,B兩點(diǎn),若△ABF1是等邊三角形,則該雙曲線的虛軸長為( )
A.2
B.2
C.
D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)集合的兩個(gè)非空子集,且滿足集合中的最大數(shù)小于集合中的最小數(shù),記滿足條件的集合對(duì)的個(gè)數(shù)為.

1)求的值;

2)求的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】[選修 4-4]參數(shù)方程與極坐標(biāo)系

在平面直角坐標(biāo)系中,已知曲線 ,以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn), 軸正半軸為極軸,取相同的單位長度建立極坐標(biāo)系.已知直線 .

(Ⅰ)試寫出直線的直角坐標(biāo)方程和曲線的參數(shù)方程;

(Ⅱ)在曲線上求一點(diǎn),使點(diǎn)到直線的距離最大,并求出此最大值.

[選修 4-5]不等式選講

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)等差數(shù)列{an}的公差為d,前n項(xiàng)和為Sn , 等比數(shù)列{bn}的公比為q,已知b1=a1 , b2=2,q=d,S10=100.
(1)求數(shù)列{an},{bn}的通項(xiàng)公式
(2)當(dāng)d>1時(shí),記cn= ,求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

同步練習(xí)冊(cè)答案