【題目】已知A,B,C是橢圓C: (a>b>0)上的三點,其中點A的坐標為(2,0),BC過橢圓的中心,且·=0,||=2||
(1)求橢圓C的方程;
(2)過點(0,t)的直線l(斜率存在)與橢圓C交于P,Q兩點,設(shè)D為橢圓C與y軸負半軸的交點,且||=||,求實數(shù)t的取值范圍.
【答案】(1)+=1. (2)
【解析】試題分析:(1)根據(jù)點的坐標求出a,然后根據(jù)求出b,即可求出橢圓方程。(2)根據(jù)題意設(shè)出直線方程,與(1)中橢圓方程聯(lián)立,設(shè)運用違達定理運算,求出t的取值范圍。
試題解析:(1)由A的坐標為(2,0),所以, ,知OC=AC,所以C(),代入橢圓方程,得b=2,所以橢圓標準方程: 。
(2)顯然,當直線k=0,時滿足,此時-2<t<2,
當直線時,設(shè)直線方程:y=kx+t,由,
設(shè),PQ中點,D(0,-2), ,判別式化簡得,得, ,所以,代入,化簡得,代入,即,所以
綜上所述,
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=(2﹣a)(x﹣1)﹣2lnx,g(x)= (a∈R,e為自然對數(shù)的底數(shù))
(Ⅰ)當a=1時,求f(x)的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)f(x)在 上無零點,求a的最小值;
(Ⅲ)若對任意給定的x0∈(0,e],在(0,e]上總存在兩個不同的xi(i=1,2),使得f(xi)=g(x0)成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知p:方程x2+mx+1=0有兩個不相等的負根;q:方程4x2+4(m-2)x+1=0無實根.若p或q為真,p且q為假,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓C: =1(a>b>0)的離心率為 ,A(a,0),B(0,b),O(0,0),△OAB的面積為4,
(1)求橢圓的標準方程
(2)設(shè)直線l:y=kx+1與橢圓C相交于P,Q兩點,是否存在這樣的實數(shù)k,使得以PQ為直徑的圓過原點,若存在,請求出k的值:若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列四個命題中正確的有
①函數(shù)y= 的定義域是{x|x≠0};
②lg =lg(x﹣2)的解集為{3};
②31﹣x﹣2=0的解集為{x|x=1﹣log32};
④lg(x﹣1)<1的解集是{x|x<11}.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)函數(shù)f(x)=ax﹣a﹣x(a>0且a≠1)
(1)若f(1)<0,求a的取值范圍;
(2)若f(1)= ,g(x)=a2x+a﹣2x﹣2mf(x)且g(x)在[1,+∞)上的最小值為﹣2,求m的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知四棱錐P﹣ABCD,底面ABCD是直角梯形,AD∥BC,∠BCD=90°,PA⊥底面ABCD,△ABM是邊長為2的等邊三角形, .
(Ⅰ)求證:平面PAM⊥平面PDM;
(Ⅱ)若點E為PC中點,求二面角P﹣MD﹣E的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】[選修 4-4]參數(shù)方程與極坐標系
在平面直角坐標系中,已知曲線: ,以平面直角坐標系的原點為極點, 軸正半軸為極軸,取相同的單位長度建立極坐標系.已知直線 : .
(Ⅰ)試寫出直線的直角坐標方程和曲線的參數(shù)方程;
(Ⅱ)在曲線上求一點,使點到直線的距離最大,并求出此最大值.
[選修 4-5]不等式選講
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com