【題目】如圖,在四棱錐中,為正三角形,,,,,為線段的中點.
(1)求證:平面;
(2)求證:平面;
(3)求三棱錐的體積.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=sin(ωx+φ)(ω>0,)的最小正周期為π,且關(guān)于中心對稱,則下列結(jié)論正確的是( )
A.f(1)<f(0)<f(2)B.f(0)<f(2)<f(1)
C.f(2)<f(0)<f(1)D.f(2)<f(1)<f(0)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若數(shù)列滿足,數(shù)列為數(shù)列,記.
(1)寫出一個滿足,且的數(shù)列;
(2)若,,證明:數(shù)列是遞增數(shù)列的充要條件是;
(3)對任意給定的整數(shù),是否存在首項為0的數(shù)列,使得?如果存在,寫出一個滿足條件的數(shù)列;如果不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】趙爽是我國漢代數(shù)學(xué)家、天文學(xué)家,他在注解《周髀算經(jīng)》時,介紹了“勾股圓方圖”,亦稱“趙爽弦圖”,它被2002年國際數(shù)學(xué)家大會選定為會徽.“趙爽弦圖”是以弦為邊長得到的正方形,該正方形由4個全等的直角三角形加上中間一個小正方形組成類比“趙爽弦圖”,可類似地構(gòu)造如圖所示的圖形它是由3個全等的三角形與中間的一個小等邊三角形拼成的一個大等邊三角形設(shè)DF=2AF=2,若在大等邊三角形中隨機(jī)取一點,則此點取自三個全等三角形(陰影部分)的概率是( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知四棱錐中,底面是正方形,平面,,是的中點.
(1)求證:平面平面;
(2)求二面角的大小;
(3)試判斷所在直線與平面是否平行,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“割圓術(shù)”是我國古代計算圓周率的一種方法.在公元年左右,由魏晉時期的數(shù)學(xué)家劉徽發(fā)明.其原理就是利用圓內(nèi)接正多邊形的面積逐步逼近圓的面積,進(jìn)而求.當(dāng)時劉微就是利用這種方法,把的近似值計算到和之間,這是當(dāng)時世界上對圓周率的計算最精確的數(shù)據(jù).這種方法的可貴之處就是利用已知的、可求的來逼近未知的、要求的,用有限的來逼近無窮的.為此,劉微把它概括為“割之彌細(xì),所失彌少,割之又割,以至于不可割,則與圓合體,而無所失矣”.這種方法極其重要,對后世產(chǎn)生了巨大影響,在歐洲,這種方法后來就演變?yōu)楝F(xiàn)在的微積分.根據(jù)“割圓術(shù)”,若用正二十四邊形來估算圓周率,則的近似值是( )(精確到)(參考數(shù)據(jù))
A.B.
C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著經(jīng)濟(jì)模式的改變,微商和電商已成為當(dāng)今城鄉(xiāng)一種新型的購銷平臺.已知經(jīng)銷某種商品的電商在任何一個銷售季度內(nèi),每售出噸該商品可獲利潤萬元,未售出的商品,每噸虧損萬元.根據(jù)往年的銷售經(jīng)驗,得到一個銷售季度內(nèi)市場需求量的頻率分布直方圖如圖所示.已知電商為下一個銷售季度籌備了噸該商品.現(xiàn)以(單位:噸,)表示下一個銷售季度的市場需求量,(單位:萬元)表示該電商下一個銷售季度內(nèi)經(jīng)銷該商品獲得的利潤.
(1)將表示為的函數(shù),求出該函數(shù)表達(dá)式;
(2)根據(jù)直方圖估計利潤不少于57萬元的概率;
(3)根據(jù)頻率分布直方圖,估計一個銷售季度內(nèi)市場需求量的平均數(shù)與中位數(shù)的大小(保留到小數(shù)點后一位).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com